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Abstract

Reliability sensitivity analysis aims at studying the influence of the parameters in the proba-

bilistic model onto the probability of failure of a given system. Such an influence may either

be quantified on a given range of values of the parameters of interest using a parametric

analysis, or only locally by means of its partial derivatives. This paper is concerned with the

latter approach when the limit-state function involves the output of an expensive-to-evaluate

computational model. In order to reduce the computational cost it is proposed to compute

the failure probability by means of the recently proposed meta-model-based importance sam-

pling method. This method resorts to the adaptive construction of a Kriging meta-model

which emulates the limit-state function. Then, instead of using this meta-model as a surro-

gate for computing the probability of failure, its probabilistic nature is used in order to build

an quasi-optimal instrumental density function for accurately computing the actual failure Improved

probability through importance sampling. The proposed estimator of the failure probability

recasts as a product of two terms. The augmented failure probability is estimated using

the emulator only, while the correction factor is estimated using both the actual limit-state

function and its emulator in order to quantify the substitution error. This estimator is then

differentiated by means of the score function approach which enables the estimation of the

gradient of the failure probability without any additional call to the limit-state function (nor

its Kriging emulator). The approach is validated on three structural reliability examples.

Keywords: Kriging, structural reliability, meta-model-based importance sampling,

sensitivity analysis
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1. Introduction

Modern engineering has to cope with uncertainty at the various stages of the design,

manufacturing and operating of systems and structures. Such uncertainty either arise from

the observed scattering of the environmental conditions in which products and structures will

evolve, or from a lack of knowledge that results in the formulation of hopefully conservative

assumptions. No matter their source, aleatory (observed) and epistemic (reducible) uncer-

tainties can be dealt with in the unified framework of probabilistic methods for uncertainty

quantification and risk-based engineering.

In particular, reliability analysis is the discipline which aims at quantifying the level of

safety of a system in terms of a probability of failure. From now on, it is assumed that the

uncertain parameters of the problem at hand are modelled by a random vectorX whose joint

probability distribution is explicitly known and dependent on a certain number of design

parameters grouped in the vector d. In practice these design parameters are considered as

mean values or, more generally, characteristic values of the random variables gathered in X.

This assumption corresponds to the common situation where d gathers “ideal” dimensions Added

whereas the randomness in X models the aleatory uncertainty in the manufacturing process

due to tolerancing.

It is also assumed that there exists a deterministic computational model M which en-

ables the assessment of the system’s performance through a so-called limit-state function g.

According to this setup, the failure probability is defined by the following integral:

pf (d) = P [g (X,M(X)) ≤ 0 | d] =

∫
F
fX(x | d) dx, (1)

where F = {x ∈ X : g(x,M(x)) ≤ 0} is the failure domain and fX is the joint probability

density function of the random vector X. The dependence of g on the output ofM will now

be dropped for the sake of clarity in the notation, but it is important to remember that each
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evaluation of g implies a run of the possibly expensive-to-evaluate computational modelM.

Note that in general the design parameters d could also affect the limit state function itself. Added

This case is not addressed in the present paper though. We assume here that parameters

d only affect X’s distribution as in [1, 2, 3, 4] because it considerably eases the reliability

sensitivity analysis through the use of the importance sampling trick initially proposed by

Rubinstein [5].

Introducing the failure indicator function 1F, the failure probability easily rewrites as its

mathematical expectation:

pf (d) =

∫
X
1F(x) fX(x | d) dx = EX [1F(X)] . (2)

This enables the evaluation of the failure probability by the so-called Monte Carlo estimator

[1]:

p̂fMCS =
1

N

N∑
i=1

1F

(
X(i)

)
, (3)

where {X(i), i = 1, . . . , N} is a sample of N independent copies of the random vector X.

Due to the central limit theorem, this estimator is unbiased and convergent and its coefficient

of variation is defined as follows (provided pf 6= 0): Improved

δMCS =

√
1− pf
N pf

. (4)

From this expression, it appears that the lower the probability pf , the greater the number

N of evaluations of 1F (hence, the number of runs of M). As an order of magnitude, one

should expect a minimum sample size of N = 10k+2 for estimating a failure probability of Improved

10−k with a 10% coefficient of variation. This clearly becomes intractable for expensive-to- Improved

evaluate failure indicator functions and low failure probabilities, which are both the trade-

mark of engineered systems. Nowadays there exists a number of techniques to evaluate

the failure probability at a far reduced computational cost.They are divided here into two Removed

categories in the sequel.

On the one hand, variance reduction techniques [1] aim at rewriting Eqn. (2) in order to

derive new Monte-Carlo-sampling-based estimators that feature a lower coefficient of varia-

3



tion than the one given in Eqn. (4). Importance sampling [1], directional sampling [6], line

sampling [7, 8] and subset simulation [9] all enable a great reduction of the computational Improved

cost compared to crude Monte Carlo sampling. Importance sampling and subset simulation Improved

are certainly the most widely applicable techniques because they are not based on any geo-

metrical assumptions about the topology of the failure domain F. Nonetheless, importance

sampling is only a concept and still requires the choice for an instrumental density function

which is not trivial and strongly influences both the accuracy and the computational cost.

On the other hand, approximation techniques make use of meta-models that imitates

the limit-state function (or at least the limit-state surface {x ∈ X : g(x) = 0}) in order

to reduce the computational cost. These meta-models are built from a so-called design of

experiments {x(i), i = 1, . . . ,m} whose size m does not depend on the order of magnitude

of the failure probability but rather on the nonlinearity of the performance function g and

the dimension n of the input space X ⊆ Rn. For instance, quadratic response surfaces

[10], artificial neural networks [11], support vector machines [12], Kriging surrogates [13]

and polynomial (resp. sparse polynomial) chaos expansions [14, 15, 16] have been used for Improved

surrogate-based reliability analysis [see 17, for a review].

The most efficient variance reduction techniques (namely subset simulation) still require

rather large sample sizes that can potentially be reduced when some knowledge about the Improved

shape of failure domain exists. Despite the increasing accuracy of meta-models, surrogate-

based (also called plug-in) approaches that consists in using emulators instead of the actual

limit-state functions lacks an error measure (alike the historical first- and second-order relia-

bility methods (FORM/SORM)). Starting from these two premises, a novel hybrid technique

named meta-model-based importance sampling was proposed by Dubourg et al. [18, 19].

This technique makes use of Kriging predictors in order to approximate the optimal instru-

mental density function in an importance sampling scheme that theoretically reduces the

estimation variance to zero.

This paper is not only concerned with the evaluation of the failure probability in Eqn. (1)

for a single value of the parameters d, but also with the analysis of its sensitivity with respect

to the latter vector. Within the structural reliability community, this type of analysis is

4



referred to as reliability sensitivity analysis [20, 21]. It provides an important insight on

system failure for risk-based decision making (e.g. robust control, design or reliability-based

design optimization).

However, it was previously recalled that the accurate estimation of a single value of the

failure probability was already computationally costly. Hence, assessing the failure probabil-

ity sensitivity by means of repeated reliability analyses is absolutely not affordable. Starting

from this premise, Au [22] proposed to consider the parameters d as artificially uncertain,

and then use a conditional sampling technique in order to assess reliability sensitivity within

a single simulation. The authors conclude that their approach reveals efficient up to 2–3

parameters in d. Based on a similar idea, Taflanidis and Beck [23] developed an algorithm

which enables the identification of a reduced set of the parameters d that minimizes the

failure probability. It is applied to the robust control of the dynamic behaviour of structural

systems.

Here, the objective is to get a more local guess of the influence of d on the failure

probability through the calculation of the gradient of the failure probability. This quantity

then enables the use of gradient-based nonlinear constrained optimization algorithms for

solving the reliability-based design optimization problem [24, 25, 26]. This topic has already

been given a quite significant interest. For instance, Bjerager and Krenk [27] differentiated

the Hasofer-Lind reliability index which itself enables the calculation of the gradient of

the failure probability. However, FORM may suffer from incorrect assumptions (namely,

the linearity of the limit-state surface in the standard space and the uniqueness of the

most probable failure point) that are hard to check in practice. Valdebenito and Schuëller

[28] propose a parametric approximation of the failure probability which then enables its

differentiation. However the accuracy of this approach is conditional on the ability of the Improved

proposed parametric model to fit the actual failure probability function.

The score function approach that is used here was initially proposed by Rubinstein

[5] [see also 1, Chapter 7]. It features the double advantage that (i) it is a simple post-

processing of a sampling-based reliability analysis (i.e. it does not require any additional

calls to the limit-state function), and (ii) it can be applied to any Monte-Carlo-sampling-
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based technique (either on the actual limit-state function or on a surrogate). For instance,

it has already been applied to importance sampling [1] and subset simulation [3].

The goal of this paper is to show how the score function approach may be coupled with

meta-model-based importance sampling for efficient reliability sensitivity anaysis. The paper

is divided into three sections. First, the basics of meta-model-based importance sampling are

briefly summarized. Then, the score function approach is applied to the proposed estimator

of the failure probability and the whole approach is eventually tested on three structural

reliability examples.

2. Meta-model-based importance sampling for reliability analysis

This section recalls the basics of meta-model-based importance sampling. For a more

exhaustive introduction, the interested reader is referred to the papers by Dubourg et al.

[18, 19] and the Ph.D thesis of Dubourg [29].

2.1. Probabilistic classification using Kriging

Generally speaking, meta-modelling (a.k.a. supervised learning) techniques aim at build-

ing an emulator of a given function (here, the limit-state function g) from a dataset D =

{(x(i), yi), i = 1, . . . ,m} where yi = g(x(i)). Kriging starts with the prior assumption that

the function to imitate is a sample path of a Gaussian process [30]. This Gaussian process

Y is further defined as follows:

Y (x) = f(x)T β + U(x), x ∈ X, (5)

where the mean f(x)T β is modelled as a generalized linear model whose functional basis

f = {fj, j = 1, . . . , P} must be chosen and coefficients β must be calculated. In the

above equation U is a zero-mean strongly stationary Gaussian process, with variance σ2
Y Removed

and whose autocorrelation R is chosen and parametrized with θ. The most widely used

class of autocorrelation function is the anisotropic squared exponential one which reads:

R (x− x′) = exp

[
n∑
i=1

−
(
xi − x′i
θi

)2
]
, (x,x′) ∈ X2. (6)
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Hence, the observations vector Y =
(
Y (x(i)), i = 1, . . . ,m

)
and some unobserved value

Y (x) at a new point x are jointly distributed as follows: Y (x)

Y

 ∼ N1+m

 f(x)T β

Fβ

 , σ2

 1 r(x)T

r(x) R

 , x ∈ X (7)

where F = [fj(x
(i)), i = 1, . . . ,m, j = 1, . . . , P ] is the regression matrix, R = [R(x(i) −

x(j)), i, j = 1, . . . ,m] is the correlation matrix and r(x) = (R(x − x(i)), i = 1, . . . ,m)T

is the cross-correlation vector. The Kriging predictor basically exploits this non-zero cross-

correlation in order to predict the unobserved value Y (x) given the observations in Y

through the calculation of the conditional (or posterior) distribution of [Y (x) | Y = y], Improved

which reads: “the distribution of the unobserved value Y (x) given the observations y in the

dataset D”. Note that throughout this paper, random quantitities are denoted with upper

case letters while deterministic realizations are denoted with the corresponding lower case

letters. Hence Y is used for describing the (unconditional) joint model, and y will now be

used for denoting the set of model responses that have been evaluated.

Santner et al. [30] eventually prove that for given values of θ and σ2
Y , this conditional

distribution remains Gaussian with mean and variance:

µŶ (x) = f (x)T β̂ + r (x)T R−1
(
y − F β̂

)
, (8)

σ2
Ŷ

(x) = σ2
Y

1−

 f (x)

r (x)

T  0 FT

F R

−1  f (x)

r (x)


 , x ∈ X, (9)

where β̂ =
(
FT R−1F

)−1
FT R−1 y is the generalized least-squares solution of the underlying Improved

linear regression problem.

The accuracy of the predictor Ŷ obviously depends on the choice of θ and σ2
Y . State-

of-the-art practices for determining the best values of these parameters are maximum like-

lihood estimation (MLE) according to the marginal distribution of Y in Eqn. (7), and

cross-validation (CV) techniques [see 31, Chapter 5]. In particular the variance σ2
Y is es-

timated from the regression residuals as follows σ̂2
Y = 1

m

(
y − F β̂

)T
R−1

(
y − F β̂

)
. The

applications presented hereafter resort to MLE.

7



The Gaussian probability measure attached to the Kriging predictor models the uncer-

tainty about the predicted values depending on the distance from the test point x ∈ X to

the points in the design of experiments (DOE) X = {x(i), i = 1, . . . ,m}. This uncertainty

is of epistemic nature, meaning that it can be reduced by making the DOE more dense in

the input space X. For usual covariance functions such as the one given in Eqn. (6), the

Kriging prediction is consistent at all points in the DOE (i.e. µŶ (x(i)) = yi and σŶ (x(i)) = 0

for i = 1, . . . ,m). Asymptotic consistency cannot be guaranteed though because it actually

depends on the adequacy of the chosen stationary correlation model to the data [see 32,

pp. 132–156].

If the sign of the emulated function is the only quantity of interest (as for reliability

analysis), it can be predicted in a probabilistic manner due to the Gaussianity of the predictor

Ŷ . In this respect, the probabilistic classification function is introduced:

π(x) = P
[
Ŷ (x) ≤ 0

]
= Φ

(
0− µŶ (x)

σŶ (x)

)
, x ∈ X, (10)

where Φ denotes the cumulative density function (CDF) of the standard Gaussian distribu-

tion, and P is the epistemic probability measure introduced by the Kriging prediction that

shall not be confused with the probability measure P attached to the random vector X.

Figure 1 illustrates the aforementioned Kriging properties on the following one-dimensional

function: x 7→ y = x sin(x) on the range [0; 15]. The big red dots in the upper panel con-

stitutes the dataset D obtained from the original function (red dotted line). The Kriging

prediction is represented here by its mean (blue line) and its 95% confidence interval (blue

shade area) which is bounded by µŶ (x)±1.96σŶ (x),x ∈ X. The probabilistic classification

function π is plotted as the blue solid line in the lower panel and it is opposed to the failure

indicator function 1F (red dotted line) which should be seen as its target. Figure 1 was Improved

procuced with the matplotlib and scikit-learn Python modules [33].

2.2. Proposed importance sampling scheme

Once the Kriging model is built, surrogate-based reliability methods usually make use

of the mean prediction only for estimating the failure probability: a proxy failure domain
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Figure 1: (Top) Kriging prediction for the function x 7→ y = x sin(x). (Bottom) Probabilistic classification

function π.
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F̃ = {x ∈ X : g̃(x) ≤ 0} is used where the surrogate function (i.e. the Kriging mean

prediction, g̃(x) ≡ µŶ (x)) is used instead of F in Eqn. (1)).

Picheny [34] proposes to use the probabilistic classification function π as a surrogate for

the failure indicator function 1F in Eqn. (2). He thus defines the following quantity:

pf ε =

∫
X
π(x) fX(x) dx = EX [π(X)] , (11)

as an estimator of the failure probability. However, it is argued that this quantity does not

equal the failure probability. Indeed, it actually sums both the Kriging epistemic uncertainty

and the one attached to the random vector X. This is the reason why Dubourg et al. [19]

named this quantity the augmented failure probability.

In order to compute the actual failure probability, Dubourg et al. [19] propose to use an

proxy to the optimal importance sampling scheme, as summarized in the sequel. First, recall Improved

that importance sampling consists in using an instrumental density function which favours

the outcome of the failure event F while satisfying some requirements such as dominance

over 1F fX , i.e. the instrumental density should be non-zero on the failure domain. Given

such an admissible density h, the failure probability rewrites:

pf =

∫
X
1F(x)

fX(x)

h(x)
h(x) dx = EZ

[
1F(Z)

fX(Z)

h(Z)

]
, (12)

where Z is distributed according to h. It can easily be shown that the optimal instrumental

density reads [1]:

h∗(x) =
1F(x) fX(x)∫

X 1F(x) fX(x) dx
=
1F(x) fX(x)

pf
, (13)

and that the corresponding variance of estimation reduces to zero. However, the latter

density cannot be used in practice because it involves both the failure probability (which is

the sought quantity) and the supposedly expensive-to-evaluate failure indicator function.

Hence, Dubourg et al. [19] propose to approximate this optimal density using the proba-

bilistic classification function as a surrogate for the failure indicator function. The proposed Improved

instrumental density reads:

ĥ∗ =
π(x) fX(x)∫

X π(x) fX(x) dx
=
π(x) fX(x)

pf ε
. (14)
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As opposed to its optimal counterpart, the latter approximation solely involves the Kriging

predictor which is much less expensive to evaluate than the actual limit-state function.

Eventually, substituting ĥ∗ for h in Eqn. (12), it can be shown [see e.g. 19] that the

failure probability recasts as follows:

pf = pf ε αcorr (15)

where αcorr is the so-called correction factor defined as follows:

αcorr = EZ

[
1F(Z)

π(Z)

]
, (16)

where Z is distributed according to ĥ∗.

The latter correction factor measures the adequacy of the probabilistic classification

function to the failure indicator function. The more accurate the Kriging predictor, the

closer to unity αcorr, and the smaller its estimation variance. In other words, it means

that meta-model-based importance sampling does not require significantly more calls to the

limit-state function when the Kriging predictor is accurate enough. But, in addition, it

always provides unbiased estimates of the failure probability even if the Kriging predictor

lacks accuracy as illustrated in Dubourg et al. [19].

Since both terms in Eqn. (15) can be estimated from two independent samples (see the

next subsection), the overall coefficient of variation of the Meta-IS estimator reads as follows

[see 19, Appendix 1]:

δMeta-IS =
√
δ2ε + δ2corr + δ2ε δ

2
corr (17)

≈
δε, δcorr�1

√
δ2ε + δ2corr, (18)

where δε (resp. δcorr) is the coefficient of variation of the augmented failure probability (resp.

that of the correction factor).

2.3. Practical use: Meta-IS

First, in order to guarantee that the almost-optimal instrumental density ĥ∗ is sufficiently

close to the optimal one, Dubourg et al. [18, 19] propose to use an adaptive refinement tech-

nique that consists in sequentially reducing the Kriging prediction variance in the vicinity of
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the limit-state surface. Such strategies are already extensively used in the field of surrogate-

based reliability analysis and other contour approximation problems [see e.g. 35, 13, 36]. Improved

The particularity of the proposed refinement strategy lies in its ability to add batches of

points to the design of experiments instead of a single (supposedly best) one. The adaptive

refinement is stopped using a re-sampling estimate of the correction factor. Indeed, it stops

when a kind of leave-one-out estimate of αcorr is sufficiently close to 1 (within a maximal

computational budget m ≤ mmax). For further details the reader is referred to the original Improved

paper [19].

Then the augmented failure probability is estimated using intensive Monte Carlo sam-

pling. It should be noted that an arbitrarily small coefficient of variation δε is affordable

here because the augmented failure probability involves the Kriging predictor only. If the

augmented failure probability is smaller than 10−6, crude Monte Carlo sampling may be

intractable (even on Kriging predictors). In this respect, Dubourg [29] proposed an adaptive

splitting technique which makes the approach scalable to small failure probabilities. The

idea is similar to the one used for subset simulation (see Appendix A).

Eventually, according to Eqn. (16), the correction factor is estimated by averaging the

ratio between the failure indicator function and the probabilistic classification function over

Ncorr realizations{Z(i), i = 1, . . . , Ncorr}. These Ncorr copies of Z, which are distributed

according to the almost optimal instumental distribution ĥ∗, are sampled using Markov

chain Monte Carlo (MCMC).

The modified Metropolis-Hastings algorithm proposed by Au and Beck [9] in the space

of independent standard Gaussian random variables can be used for this purpose. It is

currently seeded with the points in the sample set used for estimating the augmented failure

probability for which π is not zero. Note that the dependency between two successive steps

of the MCMC sampling procedure implies an increase of the estimation variance [9]. To

circumvent this drawback, it is proposed to resort to the thinning procedure that consists

in retaining one sample every t states of the Markov chains [37]. Such a procedure is not

affordable within subset simulation, because the intermediate instrumental densities involve

the costly-to-evaluate failure indicator function. It is affordable here because the almost-
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optimal instrumental density only involves the Kriging predictor. Burn-in, which consists in Improved

discarding an arbitrarily large number of increments at the beginning of the chains, is also

used to ensure that the chains have reached Z’s distribution as their stationary distributions

despite the arbitrary seeding. The interested reader is referred to the book by Robert and Improved

Casella [38] and the thesis by Dubourg [29, Chapter 3 & Appendix B] for an extended

discussion on the use of MCMC (Central Limit theorem for MCMC, most common MCMC Improved

samplers, burn-in and thinning procedures).

3. Meta-model-based importance sampling for reliability sensitivity analysis

This section deals with the calculation of the partial derivatives of the failure proba-

bility with respect to the parameters d in the probabilistic model using meta-model-based

importance sampling together with the score function approach.

3.1. The score function approach

First, the partial derivative of the failure probability with respect to the k-th component

of d reads:
∂pf (d)

∂dk
=

∂

∂dk

∫
X
1F(x) fX(x, d) dx. (19)

Assuming that (i) the joint PDF fX is continuously differentiable with respect to dk and

that (ii) the integration range X does not depend on dk, the partial derivative of the failure

probability recasts as follows:

∂pf (d)

∂dk
=

∫
X
1F(x)

∂fX(x, d)

∂dk
dx. (20)

Note that the latter equation does not hold for the uniform distribution as the bounds of

its integration range depend on its statistical moments [24, 25].

Then, in order to compute this integral as an expectation with respect to the same

probability measure as the one used for estimating the failure probability itself, Rubinstein

[5] genuinely proposed to use an importance sampling trick as in the previous section [see
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also 1, Chapter 7]. It proceeds as follows:

∂pf (d)

∂dk
=

∫
X
1F(x)

∂fX(x, d)/∂dk
fX(x, d)

fX(x, d) dx

=

∫
X
1F(x)

∂ log fX(x, d)

∂dk
fX(x, d) dx

= EX [1F(X)κk(X, d)] , (21)

where the so-called score function:

κk(X, d) =
∂ log fX(x, d)

∂dk
(22)

has been introduced. Hence, given a sample {X(i), i = 1, . . . , N} of N independent copies

of the random vector X, the following estimator:

∂̂pf (d)

∂dk MCS

=
1

N

N∑
i=1

1F

(
X(i)

)
κk

(
X(i), d

)
(23)

is unbiased and asymptotically convergent according to the central limit theorem.

In addition to these first convenient properties, it can also be seen that the estimation

of the failure probability (see Eqn. (3)) and that of its gradient can be done with the same

N -sample. Hence, reliability sensitivity analysis through the score function approach is

a simple post-processing of a Monte-Carlo-sampling-based reliability analysis. It does not

require any additional sampling of the indicator function 1F. It should also be noticed

that the approach extends to both (i) higher order derivatives, provided the joint PDF is

sufficiently differentiable [1], (ii) and statistical moments of any order and of any variable

[i.e. not only indicator functions, see 1, 2].

3.2. Application to Meta-IS

The score function approach has been successfully applied to other Monte-Carlo-sampling-

based estimators such as the subset simulation estimator by Song et al. [3] [see also 29,

pp. 161–163]. It is applied here to the meta-model-based importance sampling estimator.

First, recall that the failure probability was recast as the product of the augmented

failure probability in Eqn. (11) and the correction factor in Eqn. (16). Then, the partial
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derivative of the failure probability in Eqn. (15) with respect to the k-th design variable can

easily be derived as that of a sum of two terms: Improved

∂pf (d)

∂dk
=
∂αcorr(d)

∂dk
pf ε(d) + αcorr(d)

∂pf ε(d)

∂dk
. (24)

If crude Monte Carlo sampling is used for estimating the augmented failure probability,

its partial derivative can easily be obtained by substituting the probabilistic classification

function π for the failure indicator function in Eqn. (21):

∂pf ε(d)

∂dk
= EX [π(X)κk(X, d)] , (25)

whose Monte Carlo estimator reads (see Eq. (23)):

̂∂pf ε(d)

∂dk MCS

=
1

N

N∑
i=1

π
(
X(i)

)
κk

(
X(i), d

)
. (26)

If pf ε is estimated by means of the adaptive splitting technique detailed in Appendix A, Improved

its partial derivatives can be obtained in a similar fashion to the case of subset simulation

[see 3, 29, Chapter 4].

The k-th partial derivative of the correction factor is obtained as follows. First, let us

get back to its integral definition in Eqn. (16) and replace the almost-optimal instrumental

density h∗ by its expression:

∂αcorr(d)

∂dk
=

∫
X

1F(x)

π(x)

∂

∂dk

(
π(x) fX(x)

pf ε

)
dx. (27)

Since the probabilistic classification function π does not depend on the parameters in d, it

further rewrites:

∂αcorr(d)

∂dk
=

∫
X
1F(x)

∂fX(x,d)
∂dk

pf ε − fX(x, d)
∂pf ε

∂dk

p2f ε
dx. (28)

Using the same importance sampling trick as in Eqn. (21), one gets:

∂αcorr(d)

∂dk
=

∫
X
1F(x)

∂fX(x,d)
∂dk

pf ε − fX(x, d)
∂pf ε

∂dk

p2f ε

ĥ∗(x)

ĥ∗(x)
dx. (29)
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This expression can be further simplified by replacing again the density ĥ∗ in the denominator

on the right with its expression:

∂αcorr(d)

∂dk
=

∫
X
1F(x)

∂fX(x,d)
∂dk

pf ε − fX(x, d)
∂pf ε

∂dk

p2f ε

pf ε
π(x) fX(x, d)

ĥ∗(x) dx. (30)

It finally reduces to:

∂αcorr(d)

∂dk
=

∫
X

1F(x)

π(x)

(
κk(x, d)−

∂pf ε(d)

∂dk

pf ε

)
ĥ∗(x) dx,

= EZ

[
1F(Z)

π(Z)

(
κk(Z, d)−

∂pf ε(d)

∂dk

pf ε

)]
, (31)

where Z is distributed according to ĥ∗ as for αcorr (see Eqn. (16)). This means that the

partial derivative of the correction factor can be estimated using the same sample {Z(i), i =

1, . . . , Ncorr} as when evaluating αcorr.

To conclude, Eqn. (24) can be estimated without any additional call to the failure indi-

cator function (nor to the Kriging predictor) provided one has saved the failed samples and

the score function can be calculated.

3.3. Calculation of the score function

Let us denote by FX the joint cumulative distribution function (CDF) of the input

random vector X, which is parametrized by some deterministic vector d. In order to derive

the score function in the general case, we use the copula representation of FX which has

been recently popularized in the field of structural reliability by Lebrun and Dutfoy [39, 40].

According to Sklar’s theorem [41], and omitting the dependency in d for the time being,

the joint CDF may be cast as a combination of a copula function C : u ∈ [0, 1]n 7→ R and

the set of marginal distributions {FXi
, i = 1, . . . , n} as follows:

FX(x) = C (FX1(x1), . . . , FXn(xn)) . (32)

Accordingly the joint probability density function reads:

fX(x) ≡ ∂nFX(x)

∂x1 . . . ∂xn

= c (FX1(x1), . . . , FXn(xn))
n∏
i=1

fXi
(xi), (33)
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where c : u ∈ [0, 1]n 7→ R is the copula density function defined by: Improved

c(u) =
∂nC(u)

∂u1 . . . ∂un
u = {u1, . . . , un} (34)

and the marginal PDFs are denoted by {fXi
, i = 1, . . . , n}. Note that in the case when

the components of X are independent, the joint CDF reduces to the simple product of the

marginal distributions. In this case the copula function is the so-called independent copula

Cind(u1, . . . , un) = u1 . . . un and the copula density is constant and equal to cind(u1, . . . , un) =

1 over the whole n-hypercube [0; 1]n.

We now assume that vector d only affects the marginal distribution, i.e. that the copula

function C(·) is not directly dependent on d. Moreover we assume that the k-th component

of vector d, say dk, is involved in the k-th marginal distribution only. Indeed, as observed

in the introduction, dk is usually the mean value of the marginal distribution of Xk.

Re-introducing the dependency in d for the sake of clarity, the k-th score function reads:

κk(x, d) =
∂ log fX(x, d)

∂dk

=
∂ log c (FX1(x1), . . . , FXn(xn))

∂uk

∂FXk
(xk, dk)

∂dk
+
∂ log fXk

(xk, dk)

∂dk
. (35)

The latter equation simply reduces to the derivative of the logarithm of the k-th marginal

PDF in the case of independence (since cind is constant over the whole unit n-hypercube) as

intuited.

The expressions for the partial derivatives of usual parametric copulas densities, marginal

PDFs and CDFs can often be obtained analytically [see e.g. 24, 25, 29, pp. 164–167]. If an-

alytical expressions are not available for these quantities, they can be evaluated numerically

using a finite difference scheme.

4. Application Examples

The meta-model-based importance sampling procedure and the score function approach

are now applied to a number of examples in structural reliability for the sake of validation

and illustration. The results are compared to that obtained by FORM [27] or subset simu-

lation [9, 3]. Some reliability sensitivity results are compared here in terms of the so-called
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elasticities [see e.g. 42]. The elasticity of the failure probability with respect to a non-zero

parameter d is defined as follows:

ed =
∂pf
∂d

d

pf
, d 6= 0. (36)

This dimensionless sensitivity measure enables a more objective conclusion when the random Improved

variables parameters are heterogeneous in dimension. This measure is also less sensitive the

potential bias in the failure probability estimate (e.g. when the FORM approximation is

not correct).

4.1. Example 1: capacity & demand

The proposed technique is first applied to a simple capacity & demand example for

which both the failure probability and its partial derivatives are known analytically. The

performance function reads:

g(r, s) = r − s, (37)

where r is the outcome of the random capacity R, and s is that of the random demand S.

Capacity and demand are grouped in the input random vector X = (R, S)T. R (resp. S) is

lognormally distributed with mean µR = 7 (resp. µS = 1) and standard deviation σR = 0.5

(resp. σS = 0.5). Both variables are independent.

Thanks to the linearity of the performance function g and the independence of R and S,

the Hasofer-Lind reliability comes easily and reads as follows:

βHL =
µR − µS√
σ2
R + σ2

S

. (38)

The corresponding exact failure probability is pf = Φ(−βHL). The partial derivatives of the

failure probability with respect to any parameter d in the probabilistic model is given by:

∂pf
∂d

= −∂βHL

∂d
ϕ (−βHL) , (39)

where ϕ denotes the standard Gaussian PDF and the partial derivatives of the Hasofer-Lind

reliability index can easily be obtained from Eqn. (38).
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Method Analytical FORM Monte Carlo Subset Meta-IS

pf 1.10× 10−5 1.20× 10−5 1.05× 10−5 1.12× 10−5 1.07× 10−5

c.o.v. – – < 5% < 5% < 5%

∂pf/∂µR −3.48× 10−5 −3.75× 10−5 −3.31× 10−5 −3.53× 10−5 −3.40× 10−5

∂pf/∂µS 3.48× 10−5 3.75× 10−5 3.33× 10−5 3.55× 10−5 3.37× 10−5

∂pf/∂σR 1.04× 10−4 1.12× 10−4 9.91× 10−5 1.06× 10−4 1.04× 10−4

∂pf/∂σS 1.04× 10−4 1.12× 10−4 9.97× 10−5 1.07× 10−4 1.03× 10−4

# g-calls – 61 38× 106 451, 721 32 + 100

Table 1: Results for Example 1.

It can be seen from the numerical results in the first column of Table 1, that an increase

of the mean resistance µR would decrease the failure probability while an increase of the

mean demand would increase the failure probability. An increase of uncertainty through

either of the two standard deviations would also increase the failure probability. It can also

be noted from the derivatives absolute values that R and S have exactly the same impact on

the failure probability since the problem is symmetric. Decreasing the standard deviations

seems more efficient than changing the means, but this conclusion depends on the associated

cost of improvement. Indeed, decreasing tolerances might be more expensive than changing

means.

The results obtained by the three reliability methods are given in Table 1. FORM results

are of course in agreement with the analytical reference solution because the limit-state

surface is linear in the standard space. The insignificant discrepancy on ∂pf/∂µS is only due

here to the iHLRF algorithm [43] which is used to find the most probable failure point in

FORM. The number of g-calls accounts for the calculation of the gradient of the limit-state

function using finite differences. Sampling methods all yield results in reasonable agreement

with the reference. Despite the score function approach applies to Monte Carlo sampling, it

can be seen that its convergence requires a large sample size which makes it prohibitive for

expensive-to-evaluate limit-state functions. Subset simulation enables a significant reduction

of this computational cost but still requires a few hundreds of thousands of calls to achieve
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the same coefficient of variation than Meta-IS (the subset simulation coefficient of variation

given here is the lower bound provided by Au and Beck [9]). Meta-IS enables an even larger

variance reduction in this simple (linear, two-dimensional) case as it can be shown from the

total number of g-calls (m + Ncorr). The Kriging predictor emulates accurately the actual

limit-state function as measured by the correction factor which equals 1 here. The proposed

Meta-IS estimator may seem expensive on this simple example (with respect to FORM or

plug-in estimators), but it used here as if it was not so simple, assuming the user has no

expertise on the problem at hand.

4.2. Example 2: A roof truss

This second example is taken from the paper by Song et al. [3, Example 2]. It consists

in studying the serviceability limit-state of a roof truss with respect to its maximal vertical

displacement (see Figure 2). The limit-state function is defined as follows:

g (q, l, Ac, Ec, As, Es) = 0.03− q l2

2

(
3.81

AcEc
+

1.13

AsEs

)
, (40)

where q is the magnitude of a uniformly distributed load, l is the roof span and (Es, As) and

(Ec, Ac) denote the Young’s modulus and the cross section areas of the steel and concrete

beams respectively. All these quantities are modelled by independent normal random vari-

ables whose distributions are given in Table 2, and the admissible deflection is arbitrarily

fixed to 0.03 m as in the reference article. Note that the probabilistic modelling is, strictly

speaking, not appropriate since l, Ac, Ec, As and Es should remain positive. Despite log- Improved

normal distributions would be more relevant here, we use the same Gaussian model as in

the reference paper for the sake of comparison.

The results are given in Table 3. Despite the limit-state function is not linear in the

standard space, the limit-state surface is close to an hyperplane so that the FORM ap-

proximation reveals rather accurate. Since the failure probability is quite large here, subset

simulation does not reveal efficient compared to crude Monte Carlo sampling. Meta-IS is

again very efficient for estimating the failure probability up to the required 2% coefficient

of variation because the Kriging predictor accurately fits the limit-state surface. One could
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Variable Mean C.o.v.

q (N/m) 20, 000 7%

l (m) 12 1%

As (m2) 9.82× 10−4 6%

Ac (m2) 400× 10−4 12%

Es (N/m2) 1× 1011 6%

Ec (N/m2) 2× 1010 6%

Table 2: Probabilistic model for Example 2.

Ac

Ac

Ac

Ac
0.75A

c0.7
5A c As As

2As3As 3As

0,278l 0,222l 0,25l 0,25l

P

P

P

l/12

l/12

q

Figure 2: Example 2: the roof truss reliability problem according to Song et al. [3].
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argue that the elasticities in column “Meta-IS #1” are not in agreement with that obtained

by the other reliability methods. Indeed, despite the signs and ranking are well captured, the

values are somewhat different. In this respect, we proved convergence by raising the sample

size for estimating the correction factor to Ncorr = 1, 000 and its sensitivities in the second

stage. The results in column “Meta-IS #2” validate the approach. The corresponding re-

sults are in average closer to those obtained by Monte Carlo simulation than those obtained

by FORM. This shows that despite it is hard to calculate, the coefficient of variation of the

partial derivatives of the failure probability is higher than that of the failure probability

itself.

Failure appears most sensitive to the mean of the roof span µl and the load µq. An

increase of these two parameters would increase the failure probability since their elasticities

are positive. Then the parameters with significant sensitivity are the mean values of the Added

cross sections and Young’s moduli. The corresponding four elasticities are negative, meaning

that an increase (e.g. a stiffer structure) would decrease the failure probability. This makes

sense regarding what these two variables physically mean.

4.3. Example 3: A system reliability problem

This example was first proposed by Waarts [44, AE12]. It consists in a two-dimensional

four-branch series system reliability problem whose limit-state function is defined as follows:

g(x) = min


3 + (x1 − x2)2/10− (x1 + x2)/

√
2

3 + (x1 − x2)2/10 + (x1 + x2)/
√

2

x1 − x2 + 7/
√

2

x2 − x1 + 7/
√

2

 , x ∈ X. (41)

where x is the realization of a standard Gaussian random vector X ∼ N2(0, I2). This

problem is illustrated in Figure 3. From this figure, it can be seen that the failure probability

should feature zero derivatives with respect to the means since the failure domain surrounds

the mean. The zero mean design minimizes the failure probability. The only way to reduce

it would be to decrease the standard deviations.
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Method FORM Monte Carlo Subset Meta-IS #1 Meta-IS #2

pf 7.58× 10−3 9.44× 10−3 9.48× 10−3 9.54× 10−3 9.41× 10−3

c.o.v. – 2% 2% 2% 2%

eµq 24.44 23.94 23.71 23.30 23.93

eµl 53.77 49.46 51.26 54.24 50.48

eµAs
−20.34 −19.09 −19.38 −19.65 −19.13

eµAc
−9.02 −9.12 −9.02 −5.82 −8.76

eµEs
−20.34 −19.63 −19.61 −20.15 −19.90

eµEc
−8.20 −7.82 −7.98 −11.33 −8.12

eσq 2.58 2.46 2.38 2.06 2.45

eσl 0.25 0.20 0.21 0.07 0.18

eσAs
1.31 1.22 1.24 1.49 1.15

eσAc
1.03 1.27 1.28 0.41 1.22

eσEs
1.31 1.30 1.29 1.49 1.35

eσEc
0.21 0.21 0.27 0.80 0.32

# g-calls 112 262 350 299, 977 84 + 50 84 + 1, 000

Table 3: Results for Example 2.
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Figure 3: Example 3: the four-branch series system reliability problem by Waarts [44].
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Method FORM Monte Carlo Subset Meta-IS

pf 1.35× 10−3 2.17× 10−3 2.29× 10−3 2.75× 10−3

c.o.v. – < 5% < 5% < 5%

∂pf/∂µ1 3.13× 10−3 1.04× 10−4 5.64× 10−5 −5.84× 10−5

∂pf/∂µ2 3.13× 10−3 1.75× 10−4 1.86× 10−4 −4.24× 10−4

∂pf/∂σ1 6.64× 10−3 1.15× 10−2 1.20× 10−2 1.39× 10−2

∂pf/∂σ2 6.64× 10−3 1.11× 10−2 1.22× 10−2 1.53× 10−2

# g-calls 13 190 000 277, 346 64 + 500

Table 4: Results for Example 3.

Results are given in Table 4. Even if FORM is inapplicable there due to the 4 design

points, the bias in the failure probability is not very strong because the contribution of the

three secondary design points is not that significant for this standard normal probability

distribution. Reducing the standard deviations would make the probability lower and em-

phasize the bias. However, even with this unit-variance distribution, it can be seen that

FORM-based sensitivities are not able to discriminate the influence of the means and that

of the standard deviations while the other sampling-based techniques (including Meta-IS)

do. Indeed, sampling-based techniques did not find out that the partial derivatives of the

failure probability are zero, but they did find that the means are 100 times less influent than

the standard deviations, a feature that FORM was not able to investigate. Contours of the

final Meta-IS instrumental PDF are illustrated in Figure 3 together with the mean surrogate

limit-state surface (dashed black line). Despite the Kriging approximation does not exactly

fit the true limit-state surface, it enables a good approximation of the optimal instrumental

PDF that explores all the four failure modes.

5. Conclusion

The score function approach proposed by Rubinstein [5] reveals an efficient tool for

reliability sensitivity analysis. First, using an importance-sampling-like trick, he showed Improved

that the gradient of the failure probability turns out to be the expectation of the gradient

25



of the log-likelihood of the failed samples with respect to the distribution of the random

vector X. It means that reliability sensitivities can readily be obtained after a Monte-

Carlo-sampling-based reliability at a negligible computational cost (no additional call the

limit-state function).

Then, Song et al. [3] showed that the score function approach applies to any other Improved

sampling-based reliability methods such as subset simulation. In the present work, the

authors derived the gradient of their proposed Meta-IS estimator. This enables a great

variance reduction in the estimation of both the failure probability and its gradient as

illustrated through the examples. Improved

These conclusions imply that reliability-based design optimization using Meta-IS is now

conceivable. Indeed, as Meta-IS is able to calculate both the failure probability and its

gradient, it can be used within an optimization loop for automating the search of the best

compromise between cost and failure probability. However, in order to get the best efficiency

(minimize the number of calls to the limit-state function), one should first think about an

efficient recycling of the design of experiments from one nested reliability analysis to the

other (if the change in the design is not too big). Indeed, building the Kriging surrogate

from scratch at each iteration of the optimizer would be computationally inefficient [26].
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[41] Sklar, A.. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de

Statistique de L’Université de Paris 8 1959;8(1):11.
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Appendix A. Estimation of the augmented failure probability using an adaptive

splitting technique

As previously stated in this paper, crude Monte Carlo sampling may reveal rather in-

efficient if the augmented failure probability is low (even on Kriging predictors). Instead,

it is proposed to adapt the subset simulation scheme proposed by Au and Beck [9] to the

problem of estimating the augmented failure probability in Eqn. (11).

Given a strictly decreasing sequence of quantiles q1 > . . . > qs = 0, Eqn. (11) rewrites in

the following split form:

pf ε = p1 ε

s∏
i=2

pi|i−1 ε. (A.1)

where the intermediate augmented probabilities read as follows:

p1 ε =

∫
X
π1(x) fX(x) dx, (A.2)

pi|i−1 ε =

∫
X

πi(x)

πi−1(x)
h∗i ε(x) dx, i = 2, . . . , s. (A.3)

The latter expression involves the collection of approximate intermediate indicator functions

that are defined as follows:

πi(x) = P
[
Ŷ (x) ≤ qi

]
= Φ

(
qi − µŶ (x)

σŶ (x)

)
, i = 1, . . . , s, (A.4)
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thanks to the normality of the Kriging predictor Ŷ (x), as well as the approximate instru-

mental PDFs that read:

h∗i ε(x) =
πi−1(x) fX(x)∫

X πi−1(x) fX(x) dx
, i = 2, . . . , s. (A.5)

Then, practical use of this splitting is as follows.

(i) The optimal decreasing sequence of quantiles q1 > . . . > qs = 0 is determined by apply-

ing the classical subset simulation approach to the mean µŶ of the Kriging predictor

with intermediate probabilities set to p0 (say p0 = 10%).

(ii) The first term of the product in Eqn. (A.1) is estimated using the previsouly determined

quantile q1:

p̂1 ε =
1

N

N∑
k=1

π1

(
X(k)

)
, (A.6)

δ1 ε =

√
1− p1 ε
N p1 ε

, (A.7)

where X [1] = {X(k), k = 1, . . . , N} is a sample of N independent copies of the random

vector X.

(iii) The other s − 1 terms are eventually estimated by sampling N copies of the random

vectors X [i]
ε from their respective approximate instrumental PDFs {h∗i ε, i = 2, . . . , s}.

This sampling resorts to the modified Metropolis-Hastings algorithm of Au and Beck

[9]. Note that the Markov chains can be seeded with the points in the i-th sample

generated in step (i). Indeed, these samples are such that h∗i ε is non-zero because of

the following statement:

µŶ (x) ≤ qi−1 ⇒ πi−1(x) = Φ

(
qi−1 − µŶ (x)

σŶ (x)

)
≥ 0.5, i = 2, . . . , s. (A.8)

The estimation of the intermediate augmented probabilities uses the quantiles {qi, i =

2, . . . , s} determined in the preliminary step (i). These probabilities (resp. their
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coefficient of variation) are computed as follows:

p̂i|i−1 ε =
1

N

N∑
k=1

πi

(
X [i] (k)

ε

)
πi−1

(
X [i] (k)

ε

) , (A.9)

δi ε ≈
1

pi|i−1 ε

√√√√√√ 1

N

 1

N

N∑
k=1

πi

(
X [i] (k)

ε

)2
πi−1

(
X [i] (k)

ε

)2 − p2i|i−1 ε
 (1 + γi ε), (A.10)

where {X [i] (k)
ε , k = 1, . . . , N} is a sample of N copies of the i-th instrumental random

vector X [i], and γi ε is the coefficient that accounts for the correlation in the MCMC

sample [see 9, 29, Appendix B].

Eventually, the subset sampling estimator of the augmented failure probability is evaluated

as follows:

p̂f ε SS = p̂1 ε

s∏
i=2

p̂i|i−1 ε, (A.11)

and its coefficient of variation satisfies (as proved by Au and Beck [9] for subset simulation):√√√√ s∑
i=1

δ2i ε ≤ δεSS ≤

√√√√ s∑
i=1

s∑
j=1

δi ε δj ε. (A.12)
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