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Abstract. Polynomial chaos expansions have proven powerful for emulating responses of com-
putational models with random input in a wide range of applications. However, they suffer from
the curse of dimensionality, meaning the exponential growth of the number of unknown coeffi-
cients with the input dimension. By exploiting the tensor product form of the polynomial basis,
low-rank approximations drastically reduce the number of unknown coefficients, thus providing
a promising tool for effectively dealing with high-dimensional problems. In this paper, first,
we investigate the construction of low-rank approximations with greedy approaches, where the
coefficients along each dimension are sequentially updated and the rank of the decomposition is
progressively increased. Furthermore, we demonstrate the efficiency of the approach in different
applications, also in comparison with state-of-art methods of polynomial chaos expansions.
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1 INTRODUCTION

Surrogate modeling is an effective approach for propagation of uncertainty from the input
to a response quantity of interest through complex computational models. In this, a computa-
tional model is substituted by a meta-model that possesses similar statistical properties with the
original model, but has a simple functional form and is therefore easy to evaluate.

Polynomial Chaos Expansions (PCE) constitute a popular meta-modeling technique, which
has proven its efficiency in a wide range of applications. The key concept in PCE is to ex-
pand the response quantity of interest onto a basis of orthonormal multivariate polynomials
obtained as tensor products of univariate polynomials in the random input parameters. By con-
struction, the size of the multivariate basis and thus the number of unknown coefficients grow
exponentially with the input dimension, rendering the classical PCE approach inefficient in
high-dimensional problems. A remedy to this limitation is the use of sparse PCE, as demon-
strated in [1, 2, 3]. Recently, a new class of models called Low-Rank Approximations (LRA)
has been introduced ([4, 5, 6]) and is further investigated in this paper.

LRA exploit the tensor-product form of the polynomial basis to express the random response
as a sum of a few rank-one functions. Such representations drastically decrease the number of
unknown coefficients, which grows only linearly with the input dimension. Existing algorithms
for building LRA are based on greedy approaches, where the polynomial coefficients along
each dimension are sequentially updated and the rank of the approximation is progressively in-
creased. The sizes of the associated error-minimization problems may be orders of magnitudes
smaller than those in the classical PCE approach. However, such constructions involve open
questions that call for further investigations.

In this paper, we shed light on the construction of LRA by investigating stopping criteria
in the sequential updating of the polynomial coefficients and optimal rank selection based on
cross-validation. Moreover, we confront LRA with state-of-art PCE methods and demonstrate
the singular efficiency of the former in example applications involving the deflection of a beam,
an analytical benchmark function and heat diffusion with spatially varying diffusion coefficient.

2 UNCERTAINTY PROPAGATION WITH META-MODELS

2.1 Mathematical setting

We consider a computational model,M, with M -dimensional random input,X . Due to the
uncertainties in the input, the response quantity of interest, Y , becomes random. Therefore, the
computational model represents the map

X ∈ DX ⊂ RM 7−→ Y =M(X) ∈ R, (1)

where DX is the support of X . In general, the map Y =M(X) is not known analytically and
may correspond to a complex process.

A meta-model M̂(X) mimics the behavior of M(X), while having a simple functional
form. We herein focus on non-intrusive meta-modeling approaches, in which the original
computational model is treated as a ”black box”. Building a meta-model in a non-intrusive
manner requires an Experimental Design (ED) comprising a set of realizations of the input
vector, E = {χ(1), . . . ,χ(N)}, and the corresponding evaluations of the original model, Y =
{M(χ(1)), . . . ,M(χ(N))}.
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2.2 Error estimates

For a set of realizations of the input vector, X = {x1, . . . ,xn} ⊂ DX , and a function
x ∈ DX 7−→ a(x) ∈ R, we introduce the discrete L2 semi-norm

‖ a ‖X=

(
1

n

n∑
i=1

a2(xi)

)1/2

. (2)

A good measure of accuracy of the meta-model response, Ŷ , is the mean-square error of the
difference Y − Ŷ , called generalization error. Employing the notation in Eq. (2), the general-
ization error is estimated by

ÊrrG =
∥∥∥M−M̂∥∥∥2

Xval

, (3)

where Xval = {x1, . . . ,xnval
} is a sufficiently large set of realizations of the input vector,

denoted validation set. The estimate of the relative generalization error, êrrG, is obtained by
normalizing ÊrrG with the empirical variance of Yval = {M(x1), . . . ,M(xnval

)}.
However, meta-models are typically used in cases when a large number of model evalua-

tions is not affordable. It is thus desirable to estimate the generalization error using only the
information contained in the ED. One such error estimate is the empirical error, ÊrrE , given by

ÊrrE =
∥∥∥M−M̂∥∥∥2

E
, (4)

where the index E emphasizes that the average is carried out over the ED. The relative em-
pirical error, êrrE , is obtained by normalizing ÊrrE with the empirical variance of Y =
{M(χ(1)), . . . ,M(χ(N))}. Unfortunately, the empirical error tends to underestimate the gen-
eralization error, which might be severe in cases of overfitting.

A good compromise between accurate error estimation and affordable computational cost is
the use of Cross-Validation (CV) techniques. The CV-based error measures can provide fair
approximations of the generalization error by relying only on the ED. In the general case of
k-fold cross-validation, first, the ED is randomly partitioned into k sets of approximately equal
size. Then, a meta-model is built considering all but one of the partitions and the excluded set
is used to evaluate the generalization error; by alternating through the k sets, k meta-models
are obtained. The average generalization error of the k meta-models provides an estimate of the
generalization error of the meta-model built with the full ED.

3 POLYNOMIAL CHAOS EXPANSIONS

We assume that the components of X = {X1, . . . , XM} are independent with joint Prob-
ability Density Function (PDF) fX(x) and marginal PDFs fXi

(xi), i = 1, . . . ,M . A PCE
approximation of Y =M(X) in Eq. (1) has the form ([7])

Ŷ =MPCE(X) =
∑
α∈A

yαΨα(X), (5)

where {Ψα,α ∈ A} is a set of multivariate polynomials that are orthonormal with respect to
fX , {yα,α ∈ A} is the set of corresponding polynomial coefficients and α = (α1, . . . , αM)
are multi-indices.
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The multivariate polynomials that comprise the PCE basis are obtained by tensorization of
appropriate univariate polynomials, i.e.

Ψα(X) =
M∏
i=1

P (i)
αi

(Xi), (6)

where P (i)
αi is a polynomial of degree αi in the i-th input variable belonging to a family of poly-

nomials that are orthonormal with respect to fXi
. For instance, a uniform variable with support

[−1, 1] is associated with the family of Legendre polynomials, whereas a standard normal vari-
able is associated with the family of Hermite polynomials. Other cases can be treated through
an isoprobabilistic transformation of X to a basic random vector. Cases with mutually depen-
dent input variables can also be treated through an isoprobabilistic transformation (e.g. Nataf
transformation) to a vector of independent standard variables.

The set of multi-indices A in Eq. (5) is determined by an appropriate truncation scheme. A
common scheme, also employed in the subsequent example applications (Section 5), consists in
selecting multivariate polynomials up to a total degree pt, i.e. {Ψα, α ∈ NM :

∑M
i=1 αi ≤ pt}.

The corresponding number of terms in the truncated series is

cardA =

(
M + pt

pt

)
=

(M + pt)!

M !pt!
. (7)

For other advanced truncation schemes, the reader is referred to [2]. Note in Eq. (7) the expo-
nential growth of the number of terms with M , which is known as the curse of dimensionality.

Once the basis has been specified, the set of coefficients y = {yα, α ∈ A}may be computed
by minimizing the mean-square error of the approximation over the ED, i.e.

y = arg min
υ∈RcardA

∥∥∥∥∥M−∑
α∈A

υαΨα

∥∥∥∥∥
2

E

. (8)

Eq. (8) represents an Ordinary Least-Squares (OLS) minimization problem that can be solved
using well-known techniques. However, the required size of ED may be prohibitively large in
cases with large M . More efficient solutions schemes can be devised by considering respective
regularized problems. For example, the Least Angle Regression (LAR) method ([8]) disregards
insignificant terms from the set of predictors, thus yielding sparse meta-models. A variation
is the hybrid LAR method ([2]), which employs the LAR algorithm to select the best set of
predictors and subsequently, estimates the coefficients using OLS.

A good measure of the accuracy of a PCE meta-model is the Leave-One Out (LOO) error,
obtained by CV with k = N (see Section 2.2). According to the description of the CV approach,
this would require building N different meta-models, by sequentially setting apart each point
of the ED. However, algebraic manipulations allow evaluation of the LOO error from a single
PCE based on the full ED: Let us denote by hi the i-th diagonal term of matrix Ψ(ΨTΨ)−1ΨT,
where Ψ = {Ψij = Ψj(χ

(i)), i = 1, . . . , N ; j = 1, . . . , cardA}. Then, the LOO error can
be computed as

ÊrrLOO =
1

N

N∑
i=1

(
M(χ(i))−MPCE(χ(i))

1− hi

)2

. (9)

The relative LOO error, êrrLOO, is obtained by normalizing ÊrrLOO with the empirical variance
of Y = {M(χ(1)), . . . ,M(χ(N))}. Because êrrLOO may be too optimistic, one may use
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instead a corrected estimate, given by ([9])

êrr∗LOO = êrrLOO

(
1− cardA

N

)−1 (
1 + tr((ΨTΨ)−1)

)
. (10)

.

4 LOW-RANK APPROXIMATIONS

A canonical decomposition of Y =M(X) in Eq. (1) has the form

Ŷ =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l (Xi)

)
, (11)

where v(i)l denotes a univariate function of Xi and bl is the normalizing coefficient of the rank-1
function in the parenthesis. The number of terms R in Eq. (11) defines the rank of the decom-
position, leading to the name Low-Rank Approximations (LRA) in cases when R is small.

Of interest herein are LRA with v(i)l (Xi) expanded onto a polynomial basis that is orthonor-
mal with respect to the marginal fXi

(see Section 3), i.e.

Ŷ =
R∑
l=1

bl

(
M∏
i=1

(
pi∑
k=0

z
(i)
k,l P

(i)
k (Xi)

))
, (12)

where P (i)
k is the k-th degree univariate polynomial in the i-th input variable, of maximum

degree pi, and z(i)k,l is the coefficient of P (i)
k in the l-th rank-1 term. A representation of Y =

M(X) in the form of Eq. (12) drastically reduces the number of unknowns compared to Eq. (5).
For example, when pi = p for i = 1, . . . ,M , the number of unknowns is P = ((p+1)M+1)R,
which grows only linearly with M .

LRA can be efficiently built with greedy approaches that involve progressive increase of the
rank of the decomposition by adding rank-1 terms and successive updating of the polynomial
coefficients along separate dimensions (see e.g. [4, 6]). We herein adopt the skeleton of the
algorithm proposed by [4], comprising a sequence of pairs of a correction step, where a rank-1
tensor is built, and an updating step, where the normalizing coefficients are determined/updated.
Details are given in the sequel.

Let Ŷr denote the rank-r approximation of Y =M(X), i.e.

Ŷr =
r∑
l=1

blwl, (13)

with

wl =
M∏
i=1

(
pi∑
k=0

z
(i)
k,l P

(i)
k (Xi)

)
, (14)

and let Rr = Y − Ŷr denote the corresponding residual.
In the r-th correction step, the rank-1 tensor wr is built, by solving the minimization problem

wr = arg min
ω∈W
‖Rr−1 − ω‖2E , (15)
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where W denotes the space of rank-1 tensors. In the first correction step, one has R0 = Y .
Eq. (15) is solved by first, assigning initial arbitrary values to the polynomial coefficients and
then, successively updating the coefficients in each dimension i = 1, . . . ,M , while ”freez-
ing” the coefficients in all other dimensions at their current values. Thus, the coefficients in
dimension j, z(j)r = {z(j)1,r . . . z

(j)
pj ,r}, are obtained as the solution of

z(j)r = arg min
ζ∈Rpj

∥∥∥∥∥Rr−1 −

(∏
i 6=j

pi∑
k=0

z
(i)
k,r P

(i)
k

)(
pj∑
k=0

ζk P
(j)
k

)∥∥∥∥∥
2

E

. (16)

The above minimization problem is of size pj + 1, where typically pj < 20, and can be easily
solved using OLS.

Note that a correction step may involve several iterations over the set of dimensions; the
optimal number of iterations remains an open question. We herein propose a stopping criterion
that combines the number of iterations over the set {1, . . . ,M}, denoted Ir, and the decrease
in the relative empirical error between two successive iterations, denoted ∆êrrr. The relative
empirical error, êrrr, is obtained by normalizing

Êrrr = ‖Rr−1 − wr‖2E (17)

with the empirical variance of Y = {M(χ(1)), . . . ,M(χ(N))}. According to the proposed
criterion, the algorithm exits the r-th correction step if either Ir reaches a maximum allowable
value, Imax, or ∆êrrr becomes smaller than a threshold, ∆êrrmin.

After the completion of a correction step, the algorithm moves to an updating step, in which
the coefficients b = {b1, . . . , br} are obtained as the solution of

b = argmin
β∈Rr

∥∥∥∥∥M−
r∑
l=1

βlwl

∥∥∥∥∥
2

E

. (18)

In the r-th updating step, the value of the element br is determined for the first time, whereas the
values of the elements {b1, . . . , br−1} are updated from their previous values. The minimization
problem in Eq. (18) is of size r (recall that small ranks are of interest in LRA) and can be easily
solved using OLS.

In the above algorithm, the progressive adding of rank-1 terms results in a set of LRA of
rank {1, . . . , r} at the r-th step. [5] propose selection of the optimal rank, R ∈ {1, . . . , rmax},
with 3-fold CV (see Section 2.2). By using 3-fold CV, one obtains three meta-models for each
rank {1, . . . , rmax} as well as the respective error estimates. The rank R corresponding to the
smallest average error over the three meta-models is identified as optimal. Then, a new meta-
model of rank R is built using the full ED. The average error for the selected rank provides an
estimate of the generalization error of the final LRA.

5 EXAMPLE APPLICATIONS

5.1 Beam deflection

In this example, we use LRA to represent the mid-span deflection of a simply supported beam
under a concentrated load acting at the midpoint of the span. Table 1 shows the distributions
of the M = 5 input random variables of the model, i.e. the width, b, and height, h, of the
rectangular cross section, the length, L, the Young’s modulus, E, and the load, P . All input
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Table 1: Distributions of input random variables.

Variable Distribution mean CoV
b (m) Lognormal 0.15 0.05
h (m) Lognormal 0.3 0.05
L (m) Lognormal 5 0.01

E (MN/m2) Lognormal 3e4 0.15
P (MN) Lognormal 0.01 0.20

random variables are independent. The mid-span deflection as a function of the input variables
reads Y = PL3/4Ebh3.

In the following analysis, we consider ED of varying sizes drawn with Sobol sampling and a
validation set of size nval = 106 drawn with Monte Carlo Simulation (MCS). We note that a val-
idation set is typically not available in a real-case scenario, but is used herein to obtain reliable
estimates of the generalization errors and thus, assess the accuracy of our approaches. Em-
ploying an isoprobabilistic transformation of the input variables to standard normal variables,
Hermite polynomials are used to build the basis functions.

We first investigate selection of optimal rank among a set of candidate values {1, . . . , 20}.
After preliminary investigations, the common polynomial degree is set to p1 = . . . = p5 = 5 and
the stopping criterion in the correction step is defined by Imax = 50 and ∆êrrmin = 10−8. For
different sizes of the ED, the left graph of Figure 1 compares the rank identified as optimal using
the 3-fold CV approach with the actual optimal rank leading to the minimum generalization
error; the corresponding relative generalization errors are shown in the right graph of the same
figure. We observe that although the two ranks do not coincide in all cases, the differences in
the corresponding generalization errors are negligible. We highlight the accuracy of LRA, even
when the size of the ED is as small as N = 50.
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Figure 1: Beam deflection: Selected rank (left) and corresponding relative generalization error (right) for varying
sizes of the experimental design.

Next, we examine optimal values of the error threshold in the correction step, while other
parameters are fixed to their values above. For three different sizes of the ED and ∆êrrmin
varying from 10−9 to 10−4, the left graph of Figure 2 shows the relative generalization errors
for ranks selected with 3-fold CV. The right graph of the figure shows the corresponding total
number of iterations in the 20 steps,

∑
Ir. We observe that for the smaller ED, setting a smaller

threshold ∆êrrmin significantly improves the LRA accuracy, but increases the required number
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of iterations; the value of ∆êrrmin has a lesser effect for the larger ED.
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ê
r
r
G

 

 

N = 50
N = 200
N = 1000

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

40

50

60

70

80

90
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Figure 2: Beam deflection: Relative generalization error (left) and corresponding total number of iterations (right)
for varying error thresholds in the stopping criterion.

We now confront LRA with PCE, using the same polynomial family to build the bases and
computing the PCE coefficients with the hybrid LAR method (see Section 3). For both ap-
proaches, we consider meta-models of optimal polynomial degrees: in LRA, the optimal com-
mon maximum degree, p, is selected with 3-fold CV, whereas in PCE, the optimal maximum
total degree, pt, is identified by means of the corrected LOO error (see Eq. (10)). Other param-
eters in LRA are the same as in Figure 1. For N varying in 20 − 500, the left and right graphs
of Figure 3 respectively show the selected polynomial degrees and the corresponding relative
generalization errors. For all considered N , LRA outperform PCE, yielding meta-models that
are 2 to 3 orders of magnitude more accurate. It is remarkable that only N = 20 points suffice
to build LRA with an accuracy of the order of 10−4.
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Figure 3: Beam deflection: Optimal polynomial degrees (left) and corresponding relative generalization errors
(right) of LRA and PCE meta-models for varying sizes of the experimental design.
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5.2 Sobol function

In this example, we use LRA to approximate the Sobol function, given by

Y =
M∏
i=1

|4Xi − 2|+ ci
1 + ci

, (19)

where X = {X1, . . . , XM} are independent random variables uniformly distributed over [0, 1]
and c = {c1, . . . , cM} are non-negative constants. We herein consider the case with M = 8 and
c = {1, 2, 5, 10, 20, 50, 100, 500}T. As in the previous example, we employ Sobol sampling to
draw ED of varying sizes and MCS to draw a validation set of size nval = 106.

We confront LRA with PCE, using Legendre polynomials for the bases and computing the
PCE coefficients with the hybrid LAR method. As in the previous example, the optimal degrees
are identified by means of 3-fold CV and the corrected LOO error in LRA and PCE, respectively.
After preliminary investigations, the parameters in the stopping criterion in LRA are set to
Imax = 50 and ∆êrrmin = 10−4 (in this case, use of a smaller ∆êrrmin was found to have a
minor effect on the accuracy of the meta-model, while significantly increasing the number of
iterations). For N varying in 50− 500, the left graph of Figure 4 shows the selected polynomial
degrees, whereas the right graph shows the corresponding relative generalization errors. For all
considered N , LRA clealry outperform PCE. Note that the small regression problems involved
in the construction of LRA allow use of higher-degree polynomials that are more appropriate
for representing the Sobol function (recall that p is the polynomial degree of each univariate
function in LRA, whereas pt is the total degree of the multivariate basis of the PCE).
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Figure 4: Sobol function: Optimal polynomial degrees (left) and corresponding relative generalization errors
(right) of LRA and PCE meta-models for varying sizes of the experimental design.

5.3 Heat diffusion with spatially varying diffusion coefficient

We consider a two-dimensional stationary heat diffusion problem defined on the square do-
main D = (−0.5, 0.5) × (−0.5, 0.5) shown in Figure 5, where the temperature field T (z),
z ∈ D, is described by the partial differential equation

−∇(κ(z)∇T (z)) = 500IA(z), (20)

with boundary conditions T = 0 on the top boundary and ∇Tn = 0 on the left, right and
bottom boundaries, where n denotes the vector normal to the boundary. In Eq. (20), A =
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(0.2, 0.3)×(0.2, 0.3) is a square domain withinD (see Figure 5) and IA is the indicator function
equal to 1 if z ∈ A and 0 otherwise. The diffusion coefficient, κ(z), is a lognormal random
field defined by

κ(z) = exp[aκ + bκ g(z)], (21)

where g(z) is a standard Gaussian random field and the parameters aκ and bκ are such that the
mean and standard deviation of κ are µκ = 1 and σκ = 0.3, respectively. The random field g(z)
is characterized by an autocorrelation function ρ(z, z′) = exp (−‖z − z′‖2/0.22). The quantity
of interest, Y , is the average temperature in the square domainB = (−0.3,−0.2)×(−0.3,−0.2)
within D (see Figure 5).

To facilitate solution of the problem, the random field g(z) is represented using the Expan-
sion Optimal Linear Estimation (EOLE) method ([10]). By truncating the EOLE series after
the first M terms, g(z) is approximated by

ĝ(z) =
M∑
i=1

ξi√
li
φT
i Czζ. (22)

In the above equation, {ξ1, . . . , ξM} are independent standard normal variables;Czζ is a vector
with elements C(k)

zζ = ρ(z, ζk), where {ζ1, . . . , ζn} are the points of an appropriately defined
mesh in D; and (li,φi) are the eigenvalues and eigenvectors of the correlation matrixCζζ with
elements C(k,l)

ζζ = ρ(ζk, ζl), where k, l = 1, . . . , n. We select M = 53 in order to satisfy

M∑
i=1

li/
n∑
i=1

li ≥ 0.99. (23)

The underlying deterministic problem is solved with an in-house finite-element analysis code
developed in Matlab environment. The employed finite-element discretization with triangular
Delaunay elements is shown in Figure 5.

Figure 5: Domain and finite element mesh in heat diffusion problem.

In the following, we confront LRA with PCE (in conjunction with hybrid LAR), in which the
basis functions are made of Hermite polynomials. We use an ED of size N = 200 drawn with
Sobol sampling to build the meta-models and a MCS-based validation set of size nval = 104 to
assess their accuracy. Figure 6 shows the temperature fields corresponding to two samples of
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the ED. The polynomial degree and rank of the optimal LRA meta-model (based on 3-fold CV)
are p = 1 and R = 1, respectively; the total polynomial degree of the optimal PCE meta-model
is pt = 1 (based on the LOO error). In Figure 7, we compare the kernel smoothing estimates
of the PDF of Y obtained with the LRA and PCE meta-models to the reference PDF based on
the validation set. In the left graph, the PDFs are shown in the normal scale, whereas in the
right graph, they are shown in a logarithmic scale to highlight the behavior at the tails. The
PDF estimate obtained with the LRA meta-model is obviously superior, providing a fairly good
approximation of the reference PDF over the whole range of the response values.

Figure 6: Heat diffusion problem: Example realizations of the temperature field.
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Figure 7: Heat diffusion problem : Comparison of the PDF estimates based on LRA and PCE (using an experi-
mental design of size N = 200) to the reference PDF (left: normal scale, right: logarithmic scale).

6 CONCLUSIONS

Low-Rank Approximations (LRA) comprise an effective tool for uncertainty propagation
in problems with high-dimensional input. In this paper, we considered LRA built with poly-
nomial functions and shed light on their construction with greedy approaches. Furthemore, we
demonstrated the accuracy of LRA in example applications involving the deflection of a simply-
supported beam, the Sobol function and a two-dimensional stationary heat-diffusion problem
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where the diffusion coefficient is a random field. In the same applications, we showed that LRA
outperform the popular meta-modeling technique of polynomial chaos expansions, by using the
same polynomial families to build the basis functions.
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