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ABSTRACT: Nowadays advanced simulation models such as finite element models are used in every domain of science
and engineering in order to predict the behaviour of systems and, in case of engineering applications, to optimize them and
assess their performance. In parallel, engineers are all the more concerned with structural reliability and robust design,
meaning that the quantification of uncertainties has become a key challenge.
Due to the high cost of advanced computational models (CM), classical techniques such as Monte Carlo simulation are
not applicable. In this respect, meta-modelling techniques allow one to build up a surrogate model from a limited number
of runs of the CM. Among many available options, Kriging and Polynomial Chaos Expansions (PCE) are two popular
techniques. Kriging assumes that the computational model is a realization of a Gaussian random process whose properties
(mean, autocorrelation structure) are fitted from a set of computer runs. PCE aim at approximating the CM response
using a set of multivariate orthogonal polynomials in the input variables. The coefficients of a PCE are computed e.g. by
least-square minimization.
In this paper we introduce PC-Kriging as a new non-intrusive meta-modelling technique derived from the combination of
PCE and Kriging. A sparse set of orthonormal polynomials is first selected using the least angle regression algorithm as in
Blatman and Sudret (2011). Then the parameters of the autocorrelation function of the underlying Gaussian field are fitted
using the universal Kriging equations with the sparse PCE as a trend. Various trends and associated Kriging models are
compared by cross-validation in order to eventually distinguish the best model. Based on the resulting Kriging variance,
an infill criterion is used which allows one to refine the computer experiments design in an adaptive way so as to solve
accurately structural reliability problems at low cost.

1 INTRODUCTION

Recently, computational simulations such as finite el-
ement analyses have become a popular tool in scientific
and engineering problems. The backbone of these sim-
ulations is a computational model which imitates the be-
haviour of a physical system such as an engineering struc-

ture or a mechanical process. The increasing knowledge
in science leads to more and more complex computational
models which require increasing computational power.

At the same time, engineers are all the more concerned
with (quantitative) reliability, robustness and design op-
timization (Rasmussen and Williams, 2006), which re-
quire quantification of uncertainties in the model. Due
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to the high cost of advanced computational models,
classical methods for uncertainty quantification, such as
Monte Carlo simulation, become intractable. Thus, meta-
modelling comes into play. Meta-modelling replaces the
expensive-to-evaluate computational model by a simple
and fast-to-evaluate meta-model. The meta-model is devel-
oped using a limited number of runs of the computational
model, called the experimental design. Among many avail-
able options, Kriging and Polynomial Chaos Expansions
(PCE) are two popular techniques. These two techniques
are in the focus of this paper.

Kriging is a stochastic interpolation algorithm which as-
sumes that the computational model is a realization of a
Gaussian random process. The properties of the meta-
model (i.e. mean and correlation structure) are fitted from
a set of computer runs (Santner et al., 2003). Recent ad-
vances in Kriging are developed by e.g. Bachoc (2013),
Ginsbourger et al. (2013), Duvenaud et al. (2012) and
Dubourg (2011).

The second meta-modelling technique of interest in
this paper is PCE, which approximates the computational
model with a set of multivariate orthogonal polynomials
in coherency with the distributions of the uncertain input
quantities (Ghanem and Spanos, 2003). A sparse set of
polynomials may be determined by selection algorithms
such as the least-angle regression (Efron et al., 2004; Blat-
man and Sudret, 2011).

These two meta-modelling techniques have been mainly
developed by different research communities. In this pa-
per we introduce the new meta-modelling technique called
Polynomial-Chaos-Kriging (PC-Kriging) which combines
the two individual techniques. The performance of PC-
Kriging is compared to that of PCE and Kriging first, in
benchmark analytical problems and finally, in reliability
applications.

This paper is composed as follows: Section 2 describes
PCE (Section 2.1), PC-Kriging (Section 2.2) and validation
tests (Section 2.3). Section 3 describes meta-modelling in
the context of reliability analysis of engineering systems.
In particular, Section 3.1 illustrates adaptive design algo-
rithms and Section 3.2 applies the algorithms to a generic
problem setting and a truss structure under uncertain load-
ing.

2 META-MODELLING

Consider a computational modelMwhich maps theM -
dimensional input vector x to the one-dimensional scalar
output y, i.e. M : x ∈ DX ⊂ RM → y ∈ R. Due to un-

certainties in the input vector, the latter is represented by a
random vector X with given probability density function
(PDF) fX . For the sake of simplicity, the components ofX
are assumed independent throughout this paper. As a con-
sequence the model response is a random variable Y ob-
tained by propagating the input uncertainty in X through
the computational model:

Y =M(X) (1)

The computational model is assumed to be a black-box
model, i.e. it provides an ouput value (supposed here
scalar) for any input vector. Further, the computational
model is assumed to be deterministic so that repeated eval-
uations of the model for the same input vector lead to the
same output value.

In cases where the computational model is costly, re-
peated evaluations of M require large resources and re-
liability analyses may become intractable. Thus meta-
modelling techniques have become popular recently (Su-
dret, 2012). They approximate the behaviour of the compu-
tational modelM by an inexpensive-to-evaluate surrogate
function, i.e. a meta-model. Two popular meta-modelling
techniques are Kriging (Santner et al., 2003) and Poly-
nomial Chaos Expansions (PCE) (Ghanem and Spanos,
2003). This section introduces PCE and in the sequence,
Polynomial-Chaos-Kriging (PC-Kriging) as a modification
of Kriging.

2.1 POLYNOMIAL CHAOS EXPANSIONS (PCE)

Polynomial Chaos Expansions (PCE) approximate the
computational model M by a finite sum of orthonormal
polynomials in coherency with the distributions of the in-
put random variables:

Y ≈M(PCE)(X) =
∑
α∈A

aαψα(X) (2)

In the above equation {aα, α ∈ A} are the coefficients for
multi-indices α = {α1, . . . , αM} in the finite set A, M is
the number of independent input variables X = {Xi, i =
1, . . . ,M} and ψα(X) are multivariate polynomials which
are constructed as products of univariate orthonormal poly-
nomials:

ψα(X) =

M∏
i=1

ψ(i)
αi

(Xi) (3)

where ψ(i)
αi (Xi) is a polynomial in the i-th variable of de-

gree αi. An orthonormal polynomial basis is a set of poly-
nomials

{
ψ
(k)
n , n ∈ N

}
that are orthonormal to each other
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in the following sense:

〈ψ(k)
i ,ψ

(k)
j 〉k

def
=

∫
Dk

ψi(x)ψj(x)fXk
(x)dx = δij (4)

where ψi(x),ψj(x) are univariate polynomials, fXk
is the

marginal PDF of variable Xk and δij is the Kronecker
delta, i.e. δij = 1 for i= j and δij = 0 otherwise. For vary-
ing input marginals, different polynomial bases are avail-
able. A compilation of popular orthonormal bases can be
found in e.g. Sudret (2012).

In practice the set of polynomials is truncated to make
the computation of the coefficients tractable. Different
truncation schemes have been proposed such as the hyper-
bolic index sets (Blatman and Sudret, 2011) which are de-
fined as:

AM,p
q ≡ {α∈NM : ‖α‖q ≤ p} , where ‖α‖q ≡

(
M∑
i=1

αqi

) 1
q

(5)

where p is the maximum polynomial degree and 0 < q ≤ 1
is a parameter of the hyperbolic indexing technique which
describes the number of interaction terms in AM,p

q . More
specifically q = 1 corresponds to the classical truncation
scheme in which all polynomials of total degree less than
or equal to p are retained, whereas in the limit q→ 0 only
additive terms are retained in the expansion.

The final step in the construction of a meta-model is
the computation of the coefficients aα where α ∈ A.
Berveiller et al. (2006), Blatman (2009) and Blatman and
Sudret (2010, 2011) solve this problem by casting it as a
least-squares regression problem, namely:

a = arg min
a∈R|A|

E

(Y −∑
α∈A

aαψα(X)

)2
 (6)

PCE is based on a small set of samples of the in-
put vector X =

{
χ(1), . . . ,χ(N)

}
, called the experimen-

tal design, and the corresponding response values Y ={
Y(1), . . . ,Y(N)

}
. Based on the experimental design, the

numerical solution of Equation (6) writes:

â = (FT F)−1 FTY (7)

where Fij = ψj(χ
(i)) is the information matrix of size N ×

|A|.
This procedure is suitable for a small set of polynomi-

als. When the size of the set of polynomials A increases,
the efficiency of the whole procedure decreases. A typ-
ical case is when the number of dimensions M is large.

To reduce the complexity of the meta-model, algorithms
have recently been proposed that pick the most influen-
tial polynomials out of a candidate set of polynomials. In
the context of polynomial chaos expansions Blatman and
Sudret (2011) discussed the least angle regression selec-
tion (LARS) algorithm originally proposed by Efron et al.
(2004).

After determining the set of polynomials and its coeffi-
cients, new samples of the output space can be generated
straightforwardly by evaluating equation (2).

2.2 POLYNOMIAL-CHAOS-KRIGING (PC-KRIGING)

2.2.1 BACKGROUND

Kriging (a.k.a. Gaussian process modelling) is a stochastic
interpolation technique which interprets the computational
model M(x) as a realization of an underlying, unknown
Gaussian process:

M(x) ≈M(K)(x) = βT · f(x) + σ2Z(x, ω) (8)

where βT · f(x) =
∑P

j=1 βj fj(x) is the mean value of
the Gaussian process (a.k.a trend), P is the number of pre-
dictors, Z(x, ω) is the zero-mean, unit-variance Gaussian
process and σ2 is the Kriging variance. ω describes out-
comes of the underlying probability space with a correla-
tion family R and its hyper-parameters θ. The autocorre-
lation between two samples x and x′ of the input space
is modelled through a parametric autocorrelation function
R(|x−x′|;θ), such as in e.g. Echard (2012) and Dubourg
(2011).

A Kriging model is called ordinary Kriging when the
trend is a single parameter with unknown value. A Krig-
ing model is called universal Kriging when the trend is a
sum of functions as in equation (8). We introduce here a
new meta-modelling technique called Polynomial-Chaos-
Kriging (PC-Kriging) as a universal Kriging technique
which models the trend by a sparse set of orthonormal
polynomials (Schöbi and Sudret, 2014):

M(x)≈M(PCK)(x) =
∑
α∈A

aαψα(x) +σ2Z(x, ω) (9)

where
∑
α∈A aαψα(x) is the trend with |A| polynomials,

ψα(x) are the polynomials indexed by α ∈ A and aα are
their coefficients.

The parameters of the Kriging model are esti-
mated based on a given experimental design X ={
χ(1), . . . ,χ(N)

}
and the corresponding response values

Y =
{
Y(1), . . . ,Y(N).

}
. Given a specific set of polyno-

mials A, the algorithms of universal Kriging are applica-
ble to calibrate the Kriging meta-model. Assuming the
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shape of the autocorrelation function is known, the hyper-
parameters θ of the Gaussian process are estimated in a
first step through maximum-likelihood estimate (Santner
et al., 2003):

θ̂ = arg min
θ

[
1

N
(Y − Fβ)T R−1 (Y − Fβ) (det R)1/N

]
(10)

Then the Kriging parameters
{
β, σ2y

}
are estimated as the

generalized least-squares solution:

β(θ) =
(

FTR−1F
)−1

F R−1Y (11)

σ2y(θ) =
1

N
(Y − Fβ)T R−1 (Y − Fβ) (12)

where Rij =R(|χ(i)−χ(j)|;θ) is the correlation matrix of
the experimental design. This defines the universal Kriging
model, i.e. the PC-Kriging model.

The prediction of new sample points x is not as straight-
forward as in PCE. Kriging is a stochastic meta-modelling
framework which means that the prediction follows a
Gaussian probability distribution with mean value µŶ (x)
and variance σ2

Ŷ
(x). These are obtained by:

µŶ (x) = f(x)Tβ+ r(x)TR−1 (Y − Fβ) (13)

σ2
Ŷ

(x) = σ2y

(
1− 〈f(x)T,r(x)T〉

[
0 FT

F R

]−1 [
f(x)
r(x)

])
(14)

where ri(x) = R(|x−χ(i)|;θ) is the correlation between
the new sample x and the experimental design points X .

2.2.2 PC-KRIGING IN DETAIL

The previous section 2.2.1 showed the calibration of a PC-
Kriging model when the set of polynomials is given. In
this section the discussion on PC-Kriging is expanded on
how to obtain the optimal set of polynomials.

The PC-Kriging algorithm is summarized in Figure 1.
Given are the input distributions, the experimental design
and an autocorrelation structure (function). Based on the
orthonormal bases (in coherency with the input distribu-
tions) LARS is used to determine the best sparse set of
polynomials. LARS results in a ranked list of polynomi-
als according to their correlation to the model response
Y , in decreasing order. Then P Kriging models are cali-
brated with an increasing number of polynomials. Starting

point is the most correlated polynomial, i.e. the polyno-
mial chosen first in the LARS algorithm. The P -th meta-
model has a trend with all P polynomials in the trend.
The meta-models are compared by means of leave-one-out
(LOO) error which compares the prediction for an experi-
mental design sample χ(i) through a meta-model based on
the remaining samples in the experimental design X (−i) def

=
X\χ(i) =

{
χ(j), j = 1, . . . , i− 1, i+ 1, . . . ,N

}
:

ErrLOO =
1

N

N∑
i=1

(
Y(i) − µŶ(−i)

(χ(i))
)2

(15)

where µŶ(−i)
(χ(i)) is the prediction mean at sample point

χ(i) on the modified experimental design X (−i). Then the
model with the lowest leave-one-out error is chosen as the
PC-Kriging model. Note that in Schöbi and Sudret (2014)
this method is called Optimal-PC-Kriging (OPC-Kriging).

Dubrule (1983) derived the analytical solution for the
LOO error which avoids the computation of N meta-
models. The prediction mean and variance of the LOO
meta-models are:

µŶ(−i)
=

N∑
j=1,j 6=i

Bij
Bii
Y(j) =

N∑
j=1

Bij
Bii
Y(j) −Y(i) (16)

B =

[
σ2y R F
FT 0

]−1
(17)

where B is a square matrix of size (N + P ) and σ2y is the
Kriging variance of the meta-model including the entire ex-
perimental design X .

For the prediction of new samples, equations (13) and
(14) remain valid.

2.3 APPLICATION AND COMPARISON

The performance of PC-Kriging is compared to ordinary
Kriging and to PCE through analytical benchmark func-
tions which are inexpensive-to-evaluate. The goodness of
fit of the meta-models is assessed through a large validation
set (n = 105) using the relative generalization error:

εgen ≡

∑n
i=1

(
M(x(i))−M̂(x(i))

)2
∑n

i=1

(
M(x(i))− µy

)2 (18)

where M is the computational model (i.e. the exact re-
sponse), M̂ is the prediction mean value of the meta-model
and µy is the mean value of the exact response values.
This error compares the exact model response to the meta-
model response and is normalized by the variance of the
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Input Distributions Experimental design Autocorrelation function

LARS

PC-Kriging

y =
M(K)(P ∗=1)(x)

LOO1

y =
M(K)(P ∗=2)(x)

LOO2

· · ·

y =
M(K)(P ∗=P )(x)

LOOP

PC-Kriging model
M(PCK) = arg minM(K)(P∗=i) LOOi

Prediction

Figure 1: Flowchart PC-Kriging meta-model

exact response values. The basic settings for the compar-
ison of the meta-models are Latin-hypercube samples and
the Matérn autocorrelation function (ν = 5/2).

Table 1 shows the results obtained for a selected num-
ber of benchmark analytical functions, namely the (2-
dimensional) Rosenbrock (e.g. Eldred (2009)), Ishigami
(e.g. Blatman (2009)), Sobol’ (Sudret, 2008) and Rastrigin
function. N stands for the number of samples in the exper-
imental design and µεgen is the mean of the relative gener-
alization error of 50 replications (i.e. independent runs) of
the full analysis using different LHS samples.

The results show that PC-Kriging performs better than
the traditional techniques for the given small experimental
designs. For all four functions, PC-Kriging leads (on av-
erage) to the lowest relative generalization error. In these
cases PC-Kriging is preferable over PCE and Kriging.

Note that in the above example investigation the exper-
imental designs are small. When the experimental design
becomes large, PC-Kriging converges to PCE as can be
seen in the last line of Table 1 for the Ishigami function.
The PC-Kriging still keeps a small advantage over PCE
and both of them outperform ordinary Kriging. Note that
the relative generalization error of PCE and PC-Kriging is
already in the order of magnitude of the precision of the
numerical calculations of the computer. A comprehensive
comparison of the three approaches can be found in Schöbi
and Sudret (2014).

3 RELIABILITY ANALYSIS

Reliability analysis is a framework for estimating the
probability of a variable x exceeding a predefined thresh-
old x0. This probability is referred to as failure probability,
i.e. Pf = P (X > x0). The classical Monte Carlo method
is a robust method to estimate the failure probability but
requires a large number of model evaluations especially
for small failure probabilities. Expensive-to-evaluate com-
putational models become intractable due to the long run-
time of the analysis when repeated many times and there-
fore, meta-modelling comes into play. Meta-modelling
decreases the computational effort by approximating the
model behaviour with an inexpensive surrogate function,
such as PC-Kriging. The meta-model is supported by a
few sample points (i.e. the experimental design) and is then
able to predict a large Monte Carlo sample of the input ran-
dom vector in order to estimate the failure probability.

3.1 ADAPTIVE EXPERIMENTAL DESIGNS

The experimental design has a large influence on the
accuracy of the failure probability estimate, denoted by
P̂f . The accuracy can be increased by carefully choos-
ing additional input points and adding them to the exper-
imental design. Echard et al. (2011) proposed a frame-
work incorporating ordinary Kriging and Monte Carlo sim-
ulation, called Adaptive-Kriging-Monte-Carlo-Simulation
(AK-MCS), and Echard et al. (2013) combined ordinary
Kriging and Importance Sampling. The aim is to select
samples which increase the accuracy of the approximation
of the limit state surface (M(x) = 0).
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µεgen
Function name N Kriging PCE PC-Kriging
Rosenbrock 20 4.63 · 10−3 1.52 · 10−2 1.48 · 10−4

Ishigami 50 0.2511 0.0775 0.0430
Sobol’ 64 0.1040 0.0822 0.0593
Rastrigin 128 0.1905 0.1086 0.0450

Ishigami 256 1.381 · 10−3 1.133 · 10−12 4.147 · 10−13

Table 1: Collection of the benchmark function’s results

Input distributions
Xi, i = 1, . . . ,M

Initial experimental design
{X ,Y} where Y(i) =M(χ(i))

Experimental design in-
put vector X and cor-
responding output Y

MC population
S = {x1, . . . ,xn}

Calibrate the meta-model M̂

Compute the meta-
model response of S

Learning func-
tion LF(x), x ∈ S

Limit state threshold
M(x) = 0

Best next candidate
χ∗ = arg minx∈S LF(x)

Stopping
condition
learning

Add χ∗ to X .
Compute M(χ∗)

End of the algorithm

no

yes

Figure 2: Flowchart of the adaptive algorithm

The two approaches are based on the same idea and are
briefly summarized in this paper. A flowchart of the frame-
work is shown in Figure 2: Starting point is a small ex-
perimental design X for which the computational model
response Y is computed. Then a Monte Carlo population
S of the input space of nMC samples is generated. The
next step is to fit a Kriging (PC-Kriging) meta-model with
the given experimental design and predict the model re-
sponse for the population S . A learning function assesses
the best next point χ∗ which is added to the experimen-
tal design in order to increase the accuracy of the failure
probability estimate. The computational model evaluates
the response y∗ for the chosen input sample χ∗ and adds
the pair {χ∗, y∗} to the experimental design X . Given the
updated experimental design, the Kriging meta-model is

updated too, i.e. the meta-model is recalibrated. When the
meta-modelling technique is replaced by PC-Kriging, it is
called Adaptive-Polynomial-Chaos-Kriging-Monte-Carlo-
Simulation (APCK-MCS).

The core of the adaptive algorithm is the learning func-
tion which builds the basis for choosing additional sam-
ples. The performance of the adaptive algorithm depends
on the selection of additional samples, i.e. on the learning
function. A learning function describes the expected value
of information gained (with respect to the failure proba-
bility estimate in this case) when the argument x is added
to the experimental design of the meta-model. A simple
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formulation is the U -function which reads:

U(x) =
|µM̂(x)|
σM̂(x)

(19)

where µM̂(x) and σM̂(x) are the Kriging mean predic-
tor and standard deviation. The U -function favours points
which are close to the failure surface (µM̂(x) ≈ 0) and
points with a large prediction uncertainty (σM̂(x) � 0).
The best next sample of the Monte Carlo population S is
then chosen by minimizing the U -function:

χ∗ = arg min
x∈S

U(x) (20)

In the general case where the initial experimental de-
sign is small and the failure surface is complex, many ad-
ditional samples are required to improve the predictability
of the failure probability. The iterative procedure lasts un-
til the algorithm converges to an accurate meta-model, i.e.
until predefined stopping criteria are fulfilled. Echard et al.
(2011) discuss stopping criteria based on the learning func-
tion. For the U -function they propose to use the stopping
criterion:

min
x∈S

[U(x)] ≥ 2 (21)

The adaptive algorithm stops when the prediction mean
µM̂(x) is at least twice the value of the prediction standard
deviation σM̂(x) at each point x ∈ S . The probability of
missclassification of the current point x is then defined as:

γf (x) ≤min

[
Φ

(
µM̂(x)− 0

σM̂(x)

)
, Φ

(
0− µM̂(x)

σM̂(x)

)]
(22)

It corresponds to the probability that the true response
M(x) and the one predicted by the surrogated, namely
µM̂(x), have different signs (missclassification from the
reliability point of view). The probability of missclassifi-
cation that defines the stopping criterion Eq. (21) is then at
most γf (x)≤min [Φ(2), Φ(−2)] = 2.3 % for x ∈ S (note
that this confidence level may be selected by the analyst).

When the adaptive algorithm stops, the failure probabil-
ity is estimated through a traditional Monte Carlo simula-
tion:

P̂f =
nf
nMC

(23)

where nf is the number of samples in the population S
which µM̂(x) ≤ 0. The theoretical coefficient of variation

of the failure probability estimated by Monte Carlo sam-
pling is:

Cov
[
P̂f

]
=

√√√√ 1− P̂f
P̂f nMC

(24)

Note that the number of samples nMC should be reason-
ably high in order to ensure a low variation of the failure
probability estimate. Also note that instead of pure Monte
Carlo sampling, more advanced sampling methods such as
Importance Sampling are applicable too.

3.2 APPLICATIONS

The adaptive algorithm is illustrated on two examples:
the four-branch function and a truss structure. The four-
branch function is an analytical 2-dimensional function
which allows the visualization of the sample selection. The
truss model is a FEM model and shows the capabilities of
the adaptive design in an engineering context.

3.2.1 FOUR-BRANCH FUNCTION

The four-branch function describes the failure of a system
with four distinct component limit states. The mathemati-
cal formulation reads:

f1(x) = min


3 + 0.1 (x1 − x2)2 − x1+x2√

2

3 + 0.1 (x1 − x2)2 + x1+x2√
2

(x1 − x2) + 6√
2

(x2 − x1) + 6√
2

 (25)

where the stochastic input variables xi are modelled by in-
dependent Gaussian random variables Xi = N (0,1). The
failure event is defined as f1(x) ≤ 0, i.e. the failure proba-
bility is Pf = P (f1(X) ≤ 0). Reference values of the fail-
ure probability in adaptive designs are found in e.g. Echard
et al. (2011).

The adaptive algorithm involves an initial experimen-
tal design of 12 Latin-hypercube samples (LHS), a Monte
Carlo population S of size nMC = 106, the U -function
and the stopping criterion min [U(x)] ≥ 2. For meta-
modelling, ordinary Kriging (AK-MCS) and PC-Kriging
(APCK-MCS) are compared, both with Gaussian correla-
tion models. Table 2 shows the results of the computations
and also the reference values from Echard et al. (2011).
Note that the failure probability and the total number of
model evaluations Ntot are based on 100 independent runs
(replications) of the same algorithm in order to estimate the
accuracy of the results in terms of the coefficient of varia-
tion (Cov). The values by Echard et al. (2011) are single
run values and thus no coefficient of variation is available.
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The results show that the reference value and the values
computed by the authors coincide. Further notice that the
total number of samples Ntot are higher for the APCK-
MCS than for AK-MCS algorithm. The standard deviation
of the number of runs (Cov [Ntot]) is also higher for APCK-
MCS.

The last two lines in Table 2 show the same algorithms
with a different initial design, namely k-means clustered
samples. The initial design is generated as the centroids
of N0 clusters which are obtained with a standard cluster-
ing algorithm. The objective function for clustering is the
distance between the samples and their centroid. The in-
fluence on the resulting meta-model after computing AK-
MCS is marginal though.

The increased number of samples Ntot is not intuitively
understandable. This is why the convergence of the failure
probability estimate is shown in Figure 3 for both adap-
tive algorithms: Figure 3(a) and Figure 3(b) shows the re-
sults for the AK-MCS and APCK-MCS algorithm respec-
tively. The plots show the number of iterations on the x-
axis versus the failure probability estimate on the y-axis.
Results for the mean, the mean plus/minus standard de-
viation and the 5%- and 95%-quantiles are shown. The
APCK-MCS algorithm shows a faster convergence to a sta-
ble failure probability estimate than AK-MCS. This con-
firms the results from the previous section about the ana-
lytical benchmark problems: PC-Kriging provides a more
accurate meta-model for small experimental designs when
compared to pure ordinary Kriging. On the other side there
are the results in Table 2 which indicate more iterations for
PC-Kriging. The total number of iterations, i.e. ∝ Ntot, is
related to the stopping criterion of the adaptive algorithm.
It seems that the stopping criterion min [U(x)] ≥ 2 is too
conservative in the case of PC-Kriging.

Figure 4 and Figure 5 display different iterations steps
in the adaptive design with ordinary Kriging (AK-MCS)
and PC-Kriging meta-models (APCK-MCS) respectively.
The horizontal and vertical axes of each graph correspond
to X1 and X2, respectively. The grey points represent the
Monte Carlo population S, the blue squares are the initial
experimental design, the blue points are the added samples
in the previous iterations and the solid black line is the limit
state surface of the computational model, i.e. M(x) = 0.
Clearly visible are the four sections (branches) of the limit
state function.

Figure 4 shows the typical behaviour of the AK-MCS
algorithm for the learning function U(x). The algorithm
focuses on the exploitation of the identified failure sur-
face section (Figure 4(a), 4(b)) before exploring the next
branch after iteration j = 30 (Figure 4(c)). The remaining
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Figure 3: Convergence of the failure probability estimate
for the four-branch function in AK-MCS and APCK-MCS

two branches of the limit state function of the four-branch
function are then identified after iteration j = 40, as seen
in Figure 4(d).

On the other side, APCK-MCS focuses more on the
global search for the limit state function (Figure 5). Al-
ready after j = 30 iterations, the four branches of the limit
state function are identified (Figure 5(b)). The remaining
iterations are chosen in order to refine the limit state surface
(Figure 5(c), 5(d)). The more complex trend in PC-Kriging
allows for a better estimation of the limit state surface when
only a few samples are chosen, i.e. when a few iterations
are performed.

3.2.2 TRUSS MODEL

The adaptive algorithm is applied to the truss defined in
Hurtado (2013). The computational model is a finite ele-
ments model of a 2-dimensional truss structure the geom-
etry of which is shown in Figure 6. The elasticity model
of all bars is E = 100 · 109 Pa whereas the cross section
of the bars varies: 0.00535 m2 for the bars denoted by
•, 0.0068 m2 for the bars denoted by ◦ and 0.004 m2 for
the rest of the bars. The input random variables are the
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Method Sampling P̂f Cov
[
P̂f

]
Ntot Cov [Ntot]

Monte Carlo - 4.460 · 10−3 0.15 % 108 -
AK-MCS LHS 4.464 · 10−3 1.4 % 12 + 96 = 108 6.7 %
APCK-MCS LHS 4.471 · 10−3 1.4 % 12 + 116 = 128 24.5 %
†AK-MCS LHS 4.416 · 10−3 - 126 -
AK-MCS k-means 4.466 · 10−3 1.4 % 12 + 97 = 109 7.1 %
APCK-MCS k-means 4.466 · 10−3 1.4 % 12 + 120 = 132 22.2 %

Table 2: Composition of the analysis of the four-branch function; † is a single run result by Echard et al. (2011).

(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 4: Experimental design at different iteration steps
in the AK-MCS algorithm for the four-branch function

seven loads Pi which are modelled as independent lognor-
mal variables with mean µL = 100 kN and standard devia-
tion σ = 15 kN.

The reliability problem is formulated in terms of the de-
flection at midspan (where P4 is located). Failure is defined
as a deflection larger than 29 mm, i.e. :

g(p) = 0.029− u4(p) (26)

where u4 is the deflection at the location of load P4 and p
is the vector of the seven input forces. Thus, the probability
of failure is Pf = P (g(p) ≤ 0).

Consider the case of having a small initial experimental
design withN = 32 and additional resources for another 64
runs of the computational model. For the adaptive design
algorithm the following conditions are then set: an initial

(a) Iteration 10 (b) Iteration 30

(c) Iteration 40 (d) Iteration 50

Figure 5: Experimental design at different iteration steps
in the APCK-MCS algorithm for the four-branch function

8 x 2m

 2
m

P1 P2 P3 P4 P5 P6 P7

u4

Figure 6: Two-dimensional truss model

experimental design of N0 = 32 Latin-hypercube samples,
resources for an additional 64 samples (Ntot = 96) and a
Monte Carlo population S of nMC = 107 samples. Re-
member that in AK-MCS the points of the Monte Carlo
population are not evaluated by the computational model
M a priori.
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The algorithms are compared in terms of meta-
modelling techniques, i.e. ordinary Kriging (AK-MCS)
versus PC-Kriging (APCK-MCS).

The results are shown in Table 3. For the adaptive al-
gorithm, 100 independent runs are carried out to get an es-
timate of the variance of the failure probability estimates,
represented by the coefficient of variation (Cov). In the
case of the reference estimate of the failure probability
through Monte Carlo simulation (Ntot = 107), the coef-
ficient of variation is estimated by equation (24).

In both cases, i.e. AK-MCS and APCK-MCS, the failure
probability is accurately estimated with Ntot = 96 model
runs: the mean value (P̂f ) is accurate and the coefficient

of variation (Cov
[
P̂f

]
) is small. APCK-MCS is slightly

more accurate in terms of the variation of the results. Con-
sidering the case of a Monte Carlo simulation with 107

samples, the computational effort is not comparable to the
adaptive design meta-modelling approaches.

Method P̂f Cov
[
P̂f

]
Ntot

Monte Carlo 9.573 · 10−3 0.32 % 107

AK-MCS 9.494 · 10−3 1.5 % 96
APCK-MCS 9.612 · 10−3 1.0 % 96

Table 3: Results of the truss analysis for the total number
of exact model runs Ntot = 32 + 64 = 96

4 CONCLUSIONS

This paper introduces the meta-modelling technique
Polynomial-Chaos-Kriging (PC-Kriging) which is a com-
bination of the traditional meta-modelling techniques Krig-
ing and Polynomial Chaos Expansions (PCE). The three
approaches are compared for benchmarking analytical
functions and the results demonstrate that PC-Kriging
leads to a more accurate meta-model in terms of relative
generalization error.

In the last part of this paper, PC-Kriging is compared
to Kriging in reliability problems where an adaptive ex-
perimental design algorithm is used to obtain accurate esti-
mates of failure probabilities. PC-Kriging and Kriging per-
form similarly in terms of both the variance of the failure
probability estimate and the number of additional samples
in the experimental design.

An example application with a truss application
shows the practical applicability of the adaptive de-
sign algorithm in reliability problems. When the re-
sources (i.e. the number of runs of the computational

model) are limited, Adaptive-PC-Kriging-Monte-Carlo-
Simulation (APCK-MCS) converges to more accurate esti-
mates of the failure probability.
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