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ABSTRACT: Seismic fragility curves are commonly used to assess the vulnerability of structures to earthquakes by repre-
senting the probability of structural failure as a function of an earthquake intensity measure. The classical approach for computing
fragility curves assumes the curves to have a lognormal shape. This approach is therefore parametric. Since fragility curves play
an important role in the framework of performance-based earthquake engineering, it is of utmost importance either to validate the
accuracy of the lognormal assumption or to propose an assumption-free approach to compute these curves. In a recent work, the
authors validated the lognormal assumption for a linear steel frame. However, in a more realistic case study of this steel frame with
non-linear material behavior, the lognormal assumption showed insufficient accuracy. In this paper, we consider a different type
of structure, i.e. a typical reinforced-concrete bridge column subject to recorded ground motions. We compute fragility curves for
the column, first with the classical parametric approach and subsequently with a non-parametric method based on kernel density
estimation. Two different intensity measures are considered, namely the peak ground acceleration and the pseudo-spectral accel-
eration. The results show the limitations of the classical lognormal approach for this type of structure and prove kernel density
estimation to be a promising tool for establishing seismic fragility curves.

KEYWORDS: non-parametric fragility curves, concrete bridge columns, lognormal assumption, kernel density estimation

1 INTRODUCTION

In the framework of performance-based earthquake engineer-
ing, seismic fragility curves are a common tool for evaluat-
ing the vulnerability of structures to earthquakes. The vulnera-
bility is represented by the probability (or the likelihood) that
the considered structure fails to fulfill a prescribed safety cri-
terion (concerning stresses, strains, displacements, etc. ). The
failure probability is a function of the earthquake severity. The
latter is usually described by quantitative intensity measures
such as the peak ground acceleration PGA and the pseudo-
spectral acceleration at the fundamental period T1 of the struc-
ture Psa(T1) (see e.g. [1] for a wide variety of intensity mea-
sures).

Fragility curves can be computed analytically as follows.
One first represents the considered structure by an analytical
model (usually using a finite element code). Analyses of the
model subject to a set of earthquake ground motions are con-
ducted from which structural responses are extracted. Fragility
curves are built using the collected results together with the
known ground motion intensity. Note that the uncertainty (both
aleatory and epistemic) represented by the fragility comes from
multiple sources. In this approach, we are assuming that the
only source is randomness in the ground motion.

As one can see in the definition, fragility curves have no pre-
scribed shape. However, these curves are usually computed un-
der the assumption that they have the shape of a lognormal cu-
mulative distribution function. In a recent paper, [2] validated
this assumption in the case of a linear steel frame structure
subject to a large set of synthetic ground motions. However,
the lognormal curves built for a similar structure with non-
linear behavior showed some discrepancies with the reference
curves [3].

In this paper, we consider a different type of structure namely
a reinforced concrete (RC) bridge column under recorded
ground motions. We compute the fragility curves of the RC

column using the lognormal approach and a non-parametric
approach based on the kernel density estimation technique [3].
Subsequently, we compare the curves obtained with the differ-
ent approaches.

The paper is organised as follows: in Section 2, the model of
a concrete bridge column in the finite element code OpenSees
[4] is presented. In Section 3, we present the set of recorded
ground motions that was selected for the time-history analy-
ses in Section 4. The lognormal and kernel density estimation-
based approaches are described in Section 5, followed by the
results and discussions in Section 6.

2 REINFORCED CONCRETE BRIDGE COLUMN AND
PERFORMANCE LEVELS

2.1 Reinforced concrete bridge column

Typical California highway overpass bridges are considered.
More precisely, we are interested in bridges with single-
column bents where the column has a uniform circular cross
section over the entire column height above the ground and
continues into an integral pile shaft foundation (see Figure 1).

Figure 1: Bridge longitudinal and transverse configurations [5]

Structural damages of all the major bridge components (e.g.
decks, columns, abutments, bearings, etc. ) may be observed
after earthquake events. Among multiple failure modes of
bridges, the column failure is of particular interest, since it can
lead to the malfunction or even the collapse of a bridge, see
e.g. [6, 7].

In this paper, the circular reinforced concrete (RC) bridge col-
umn of diameter D = 1.2 m and height H = 6 m is modelled
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by a 3D cantilever element (Figure 2). The weight of the su-
perstructure (e.g. deck, girders, non-structural elements, etc. )
is represented by a concentrated vertical load N = 300 kN.
The column has perimeter longitudinal and transverse spiral
reinforcement: 30 longitudinal reinforcing bars (32 mm diam-
eter, 819 mm2 area each) are evenly placed at a radius defined
by a 50 mm concrete cover and the diameter of the transverse
reinforcement. The spiral transverse rebars (19 mm diameter,
284 mm2 area each) are used to confine the concrete and con-
tribute to the shear resistance of the section during earthquakes.
The spacing between transverse reinforcement is 0.1 m.

Figure 2: Bridge column model

The column is modelled in the finite element code OpenSees
as a fiberized nonlinear beam-column element. The use of fiber
section allows modelling of the distribution of plasticity along
the column height and over the cross section. 60 and 24 lay-
ers were used to model the core and cover concrete respec-
tively. The concrete material behavior is based on the Kent-
Scott-Park stress-strain relation [8] (material Concrete02 in
OpenSees). The maximum compressive stress of unconfined
concrete is fc = 45 MPa. The characteristics of confined con-
crete are calculated according to the Mander model [9]. The
crushing strain is set equal to 2.5%. The longitudinal rein-
forcing bars are represented by a layer of fibers at their re-
spective positions. An elastic-plastic trilinear model was used
for the steel material. This is basically the additive model
of three UniaxialMaterial models in OpenSees, namely
one elastic model, one elastic perfectly-plastic model and one
kinematic harderning model with added Giuffré-Menegotto-
Pinto transitions on the loading and unloading loops. The steel
has an initial stiffness Es = 200, 000 MPa and a post-yield
stiffness equal to 0.015Es (3, 000 MPa). The yield stress is
fy = 462 MPa corresponding to a yield strain 0.24%. The steel
continues to hardern after yielding until a strain of 8% and then
it softens at a slope equal to 7.5% of the initial stiffness up to
the ultimate strain of 14%. If the tensile (resp. compressive)
strain falls above (resp. below) 14%, the material is assumed
to be in failure. The softening behavior models the strength
degradation of the material. Moreover, this steel model allows
one to account for the Bauschinger effect. The nonlinear ge-
ometry effects (P −∆ effects) are taken into consideration as
well by using the LinearWithPDelta geometric transfor-
mation. The nonlinear shear and torsion behaviors are calcu-
lated and aggregated in the section. The reader is referred to
[5] for more details on the modelling of the concrete column
in OpenSees.

2.2 Performance levels of concrete bridge columns

During an earthquake, the reinforced concrete columns might
experience the following damages sequentially [10, 11]: con-
crete cracking, yield of the longitudinal reinforcement, con-
crete cover spalling, fracture of the transverse reinforcement,
buckling and fracture of the longitudinal rebars, concrete core
crushing, shear failure and axial load failure. Damages are clas-
sified into five levels, namely no damage, minor, moderate, ma-
jor damage and local failure/collapse. [12] provides photos of
damaged columns from laboratory experiments and past earth-
quakes that illustrate the different damage levels.

The initiation and progression of damages are related to the
functionality of the bridge in terms of performance levels.
A five-level performance evaluation approach was proposed
in [11]. The performance levels range from cracking, yield-
ing, initiation of local mechanism, full development of local
mechanism and finally strength degradation. The correspond-
ing socio-economic description of these performance levels
are fully operational, operational, life safety, near collapse and
collapse. These five qualitative performance levels are linked
to quantitative design parameters (e.g. steel strain, concrete
strain, plastic rotation, etc. ) among which the drift ratio will
be considered in this paper.

It is worth noting that there exist formulations which allow one
to predict drift ratios corresponding to certain damages such as
concrete cover spalling, longitudinal reinforcement buckling
[13]. The predicted values of the drift ratio limits are functions
of the material strength, diameter of reinforcing bars, column
diameter, axial load ratio, etc. In this paper, for the sake of
simplicity we use the drift limits for concrete bridge columns
recommended by two sources [10, 14] for the operational and
life safety levels. These drift limits are shown in Table 1.

Table 1: Bridge performance/design parameter
Reference Level Description Damage Drift δo
[10] II Operational Minor 0.01
[10] III Life safety Moderate 0.03
[14] II Operational Minor 0.005
[14] III Life safety Moderate 0.015

Note that different sources recommend different drift limits
for the same performance level. The accuracy of these values,
however, is not discussed herein.

3 GROUND MOTIONS SELECTION

The ground motions utilized in this paper are records from the
PEER Strong Motion Database that were collected and pre-
viously used by [5]. Initially, the records are chosen in the
framework of the bin approach, i.e. the records are classified
in four bins according to the earthquake moment magnitude
M , the closest distance to fault rupture R and the local soil
type. These are characteristic of the non-near-field motions
(R > 15 km) recorded in California. All of them have three
orthogonal component accelerograms corresponding to fault-
normal, fault-parallel and vertical directions. Subsequently, the
ground motion set is enriched with some near-field records.
These represent ground motions from high-magnitude earth-
quakes recorded at distances less than 15 km. Finally, a total
number of 531 triplets was selected, covering both near- and
far-field earthquakes (R varies from 10 to 100 km) and a rel-
atively large range of moment magnitude (M varies from 6 to
7.6). Figure 3 depicts the distribution of the selected records in
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the M − R space. The intensity measures of the earthquakes
(e.g. PGA, Psa, etc. ) are extracted from the records using a
data extraction routine. In this paper, Psa stands for Psa(T1)
which is the pseudo-spectral acceleration at the fundamental
period T1 of the column.
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Figure 3: Distribution of selected ground motion records in the
M −R space

4 NON-LINEAR DYNAMIC ANALYSES

We first run modal analysis of the bridge column which re-
sults in the initial elastic period T1 = 0.535 s in both the lon-
gitudinal and transverse directions. To demonstrate the force-
deformation relation of the column, we conduct full cycles of
loading/ unloading behavior where the column top displace-
ment varies between 0 m, 0.1 m, -0.1 m, 0.15 m, -0.15 m and
0 m. Then the column is reset to its initial condition and pushed
over monotonically. Given the similarity in the geometry and
the reinforcement in the two directions, the loading/ unloading
pattern and the push-over curves are similar. In both directions,
the column fails at a top displacement equal to 0.35 m, which
corresponds to a drift ratio ∆ = 0.05. Figure 4 shows the load-
ing/ unloading behavior of the column and the push-over curve
in the transverse direction.

The column is then subject to the selected ground motions.
Having at hand three orthogonal component accelerograms
(two horizontal and one vertical) for each earthquake record,
we could afford to run the three-dimensional time-history anal-
yses of the column. The fault-normal component is set to
hit the column in the longitudinal direction (bridge-span di-
rection), the fault-parallel component hits the column in the
transverse direction and the vertical component strikes in the
up-down direction. It is worth noting that the ground motion
records were not scaled during the analyses but were kept as
recorded. For illustration, the top displacement of the column
subject to the Northridge-01 earthquake motion recorded at the
station Simi Valley - Katherine Rd (M = 6.69,R = 21.32 km)
is depicted in Figure 5. One can observe that the vertical mo-
tion does not pose a critical threat to the column compared to
the horizontal motions.

During the analyses, the intensity measures (IM ) of the
ground motions (PGA, Psa) and the corresponding maximal
responses (drift ratios ∆) in the transverse direction were col-
lected. Finally, 531 paired samples (IMi,∆i) were available.
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Figure 4: Loading/ unloading behavior of the column and
push-over curve in the transverse direction
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Figure 5: Top displacement of the column subject to a specific
earthquake

5 SEISMIC FRAGILITY CURVES

The fragility curves, by definition, represent the failure prob-
ability of the considered structure with respect to a safety cri-
terion (e.g. the drift ratio limit δo) given the intensity measure
(IM ) of the earthquake motion (e.g. PGA, Psa). The failure
probability is expressed explicitly by the conditional probabil-
ity that the drift ratio ∆ attains or exceeds the threshold δo
given IM as follows:

Frag(IM ; δo) = P[∆ ≥ δo|IM ] (1)

In this section, we present the classical lognormal approach
and a recently proposed non-parametric approach to compute
fragility curves.

5.1 Classical approach

The approach that has been typically employed so far assumes
that the fragility curves have the shape of a lognormal cumu-
lative distribution function (CDF) as a function of the inten-
sity measure. In recent years, some different shapes have been
adopted for fragility curves, namely the normal, exponential,
Weibull and Gamma CDFs [15, 16]. All these curves belong to
a class of fragility curves that is considered parametric in the
sense that their shape is preselected. The lognormal curves are,
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however, the most commonly used. The lognormal curves can
be computed using two techniques that are described next.

5.1.1 Linear regression-based approach

Suppose that the design parameter (e.g. the drift ratio ∆) is
related to the ground motion IM (e.g. PGA, Psa) by a prob-
abilistic seismic demand model (PSDM) which reads:

log ∆ = A log IM +B + ζ Z; Z ∼ N (0, 1) (2)

where log(·) denotes the natural logarithm. This probabilis-
tic model assumes that ∆ has a lognormal distribution whose
log-mean value is a linear function of log IM . As a result, the
fragility curve in Eq. (1) is reformulated as follows:

F̂rag(IM ; δo) = P [log ∆ ≥ log δo]

= Φ

(
log IM − (log δo −B) /A

ζ/A

) (3)

where Φ (t) =
t∫
−∞

e−u
2/2/
√

2π du is the Gaussian CDF.

Eq. (3) implies that the fragility curve has the shape of a log-
normal CDF as a function of IM . Consider the value IMo that
satisfies log δo = A log IMo + B. For the sake of simplicity,
hereafter we refer to the quantities µ = (log δo −B) /A =
log IMo, σ = ζ/A and m = eµ = IMo as "log-mean",
"log-standard deviation" and "median", respectively. We un-
derline that these terms are merely used to describe the shape
of the fragility curve and do not represent properties of a cer-
tain lognormally distributed random variable. The log-standard
deviation is a measure of the steepness of the fragility curve,
whereas the median determines the position IMo where the
curve attains the value 0.5.

This approach relies on the computation of the parameters of
the PSDM in Eq. (2). To this purpose, a linear regression tech-
nique in the logarithmic scale is usually applied. The parame-
ters A, B, ζ are determined using least square errors estima-
tion.

5.1.2 Maximum likelihood estimation-based approach

Assume that the fragility curves can be written in the following
general form:

F̂rag(IM ; δo) = Φ

(
log IM − logm

σ

)
(4)

in whichm is the median and σ is the log-standard deviation of
the lognormal curves. [17] proposed the use of maximum like-
lihood estimation to determine these parameters. Denote by
ω the event that the damage corresponding to the prescribed
threshold δo occurs. Assume that Y (ω) is a random variable
with Bernoulli distribution, i.e. Y takes the values 1 and 0 with
probability Frag(·; δo) and 1 − Frag(·; δo). Considering the
independent Bernoulli experiments where the structure is sub-
ject to ground motions i = 1, . . . , N , the likelihood function
of (m, σ) reads:

L =

N∏
i=1

[Frag(IMi; δo)]
yi [1− Frag(IMi; δo)]

1−yi (5)

where IMi is the intensity measure of the ith motion and yi
takes the value 1 or 0 depending on whether the structure sub-
ject to the ith motion has a drift greater than δo or not. The pa-
rameters (m, σ) are determined by maximizing the likelihood
function. In practice, a straightforward optimization technique
is applied on the log-likelihood function, i.e. :

(m; σ) = arg max logL (6)

5.2 Non-parametric approach

In this section, a non-parametric approach to compute fragility
curves, recently proposed by [3], is presented. This approach is
based on the kernel density estimation (KDE) technique. KDE
is an evolution of the histogram technique that is commonly
used for estimating the probability density function (PDF) of
random variables. As defined earlier, the fragility represents
the conditional probability that ∆ attains or exceeds a safety
threshold δo given IM=a. Let us rewrite Eq. (1) as:

Frag(a; δo) =

+∞∫
δo

f∆(δ|IM = a) dδ (7)

By definition, the conditional PDF in Eq. (7) is given by:

f∆(δ|IM = a) =
f∆,IM (δ, a)

fIM (a)
(8)

in which f∆,IM (·) (resp. fIM (·) ) is the joint distribution of
the vector (∆, IM) (resp. the marginal distribution of IM ).
These joint and marginal PDFs will be estimated by means of
KDE.

Let us start with fIM (a). Given a sample set
{IMi, . . . , IMN} of the random variable IM , its marginal
PDF is obtained as [18]:

f̂IM (a) =
1

NhIM

N∑
i=1

K

(
a− IM i

hIM

)
(9)

where hIM is the bandwidth parameter and K(·) is the kernel
function which is positive and integrates to one. A standard
normal PDF is usually adopted for the kernel, i.e. K(x) ≡
ϕ(x) = e−x

2/2/
√

2π.

Similarly, given a sample set {(∆i, IMi), i = 1, . . . , N} one
can estimate the joint PDF using the multivariate standard nor-
mal kernel as follows:

f̂∆,IM (δ, a) =
1

2πN |H|1/2
×

N∑
i=1

exp

[
−1

2

(
δ −∆i

a− IMi

)T

H−1

(
δ −∆i

a− IMi

)] (10)

where H is the bandwidth matrix and |H| is its determinant.
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The proposed estimator of the fragility curve eventually reads:

F̂rag(a; δo) =

+∞∫
δo

f̂∆(δ|IM = a)dδ =
hIM

2π |H|1/2
×

+∞∫
δo

N∑
i=1

exp

[
−1

2

(
δ −∆i

a− IMi

)T

H−1

(
δ −∆i

a− IMi

)]
dδ

N∑
i=1

ϕ

(
a− IMi

hIM

)
(11)

The accuracy of the estimate relies mostly on the evaluation
of the bandwidth parameters H and hIM . A short review of
the existing techniques as well as an engineering-oriented tool
for computing the bandwidth parameters can be found in [19].
Note that the choice of the kernel function does not affect sig-
nificantly the density estimation, hence the resulting fragility
curves.

Preliminary investigations have shown that KDE-based curves
obtained for pairs (IM, ∆) are characterized by large uncer-
tainty for large IM values and drift limits. This is due to the
scarcity of observations in the upper tail of the distribution of
an IM (extreme earthquake events occur at relatively low fre-
quencies) and also, due to the large dispersion of highly non-
linear structural responses. To reduce this effect, inspired by
the functional form of the probabilistic seismic demand mod-
els, [19] proposed to apply the KDE method on the paired data
in the logarithmic scale. Using the standard random variable
transformation technique, [19] proved that the fragility curves
in Eq. (7) can be equivalently estimated as follows:

F̂rag(a; δo) =

+∞∫
log δo

f̂U (u|V = log a) du (12)

in which U = log ∆ and V = log IM . In the subsequent ex-
ample application, KDE-based fragility curves are developed
using the logarithmic transformation in Eq. (12).

6 RESULTS AND DISCUSSION

6.1 Fragility curves for concrete bridge column

In this section, using the data collected from the nonlinear
time-history analyses, we establish the fragility curves of the
concrete bridge column by means of the lognormal and KDE-
based approaches. Both linear regression (LR) and maximum
likelihood estimation (MLE) techniques are used to determine
the parameters of the lognormal curves. We build fragility
curves corresponding to the various drift ratio limits presented
in Section 2.2 (δo = 0.005, 0.01, 0.015, 0.03). Two intensity
measures are considered, namely the peak ground acceleration
(PGA) and the pseudo-spectral acceleration (Psa), which are
among the most commonly used in fragility analysis.

The non-parametric KDE-based approach is assumption-free
and purely based on the distribution of the collected data.
In [3, 19] we validated the accuracy of the KDE-based
curves through comparisons with fragility curves obtained
with a Monte Carlo simulation approach using a large num-
ber of analyses of a steel frame structure subject to synthetic

ground motions. Therefore, in this paper we consider the non-
parametric KDE-based curves as reference to assess the accu-
racy of the lognormal curves.

As described in Section 5, the lognormal approach consists
in assuming that the fragility curves have the shape of a log-
normal CDF and then estimating the parameters of this func-
tion. Using the LR technique, the parameters of the lognormal
curves are indirectly derived by fitting a linear model to the
paired data (log IM, log ∆). Figure 6 (resp. Figure 7) depicts
the paired data {(PGAi,∆i)} (resp. {(Psai,∆i)}) in the log-
scale and the fitted PSDM using LR. The coefficient of deter-
minationR2 of the LR model considering PGA (resp. Psa) as
IM is 0.729 (resp. 0.963). We observe that using Psa as IM
leads to smaller dispersion i.e. smaller variance of the data (ζ
in Eq. (2)) as compared to using PGA. This is expected since
Psa is a structure-specific IM . We note in Figure 7 that for
small values of Psa (Psa<2 m/s2) the data are almost per-
fectly correlated. However, a larger dispersion is observed for
higher values of Psa. In the MLE approach, for each drift ratio
the observed failures are modeled as outcomes of a Bernoulli
experiment and the fragility parameters are determined by
maximizing the respective log-likelihood function. Finally, the
KDE approach requires estimation of the bandwidth parame-
ter and the bandwidth matrix. In the present example, these are

determined as h= 0.2166 and H =

[
0.1039 0.0781
0.0781 0.0724

]
(resp.

h= 0.2218 and H =

[
0.0528 0.0501
0.0501 0.0482

]
) when PGA (resp.

Psa) is considered as IM .
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Figure 6: Paired data {(PGAi,∆i) , i = 1, . . . , 531} and lin-
ear regression in the logarithmic scale

For the two IMs and the three drift limits of interest, Table 2
lists the medians and log-standard deviations of the lognor-
mal curves fitted with the LR and MLE approaches as well
as the medians for the KDE-based curves determined as the
points where the curves attain the value 0.5. The correspond-
ing fragility curves are depicted in Figure 8 (resp. Figure 9)
when the considered IM is PGA (resp. Psa). When PGA
is used as IM (see Figure 8), for all drift limits considered,
the lognormal curves obtained by LR are close to those ob-
tained by MLE. The lognormal curves exhibit discrepancies
from the KDE-based curves, which tend to be larger for larger
PGA values and larger drift limits. Table 2 shows that the dif-
ferences between the medians of the lognormal and the KDE-
based curves are larger for the limit δo = 0.03. When Psa is
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Figure 7: Paired data {(Psai,∆i) , i = 1, . . . , 531} and linear
regression in the logarithmic scale

used as IM (see Figure 9), the MLE-based lognormal curves
are in a fair agreement with the non-parametric curves, par-
ticularly for the smaller drift limits. However, the lognormal
curves obtained with LR exhibit significant discrepancies from
the KDE-based curves, which become larger with increasing
drift limit.
Table 2: Parameters of fragility curves

IM δo Approach IMo (m/s2) σ

PGA

0.005
LR 2.4500 0.4980
MLE 2.3763 0.4637
KDE 2.2255

0.01
LR 4.8490 0.4980
MLE 4.8696 0.4568
KDE 4.4817

0.015
LR 7.2292 0.4980
MLE 7.0111 0.4806
KDE 6.6859

0.03
LR 14.3080 0.4980
MLE 13.2471 0.4370
KDE 11.0232

Psa

0.005
LR 4.3055 0.1748
MLE 4.2402 0.2162
KDE 4.4817

0.01
LR 8.2256 0.1748
MLE 8.4852 0.3209
KDE 8.1662

0.015
LR 12.0122 0.1748
MLE 12.7630 0.3800
KDE 13.4637

0.03
LR 22.9489 0.1748
MLE 23.9702 0.3688
KDE 20.0855

Note that the LR estimation leads to far less accurate lognor-
mal curves for Psa than for PGA (as compared to the KDE-
based curves), although the R2 coefficient of the linear fit is
higher for Psa. This is due to the fact that the assumption of
homoscedastic errors, inherent in Eq. (2), is not valid for the
specific data set (Psa,∆), as one can observe in Figure 7. The
respective errors in the linear model have close to zero variance
for Psa<2 m/s2 and increasing variance for larger values of
Psa. Accordingly, by considering a constant variance over the

entire range of Psa values, we underrestimate the actual vari-
ance in the regions of interest in fragility analysis. Note that
by transformation from the log-scale to the the linear scale of
the data, these effects appear amplified. By providing a distinct
pair of median and log-standard deviation at each level of δo,
MLE outperforms LR in the estimation of lognormal fragility
curves. In Table 2, we observe that the log-standard deviations
estimated by MLE are significantly larger than those obtained
by LR.

The above analysis demonstrates that the accuracy of the log-
normal curves strongly depends on (i) the considered drift
limit, (ii) the IM used to represent earthquake severity and (iii)
the technique used to estimate the parameters of the curves.
Overall, the lognormal curves exhibit larger deviations from
the KDE-based curves for larger drift limits. The MLE-based
curves are closer to the KDE-based curves for Psa as IM
than for PGA. However, for Psa as IM , the LR approach
yields unacceptably inaccurate estimates of fragility. It is worth
noting that different intensity measures are recommended in
the literature for different types of structures [20, 21]. For in-
stance, in establishing fragility curves for highway bridges,
[20] recommend use of PGA and Psa for synthetic motions,
whereas they recommend use of cumulative absolute velocity
for recorded motions. For reinforced concrete frame buildings,
[21] show that in terms of efficiency (i.e. smaller dispersion in
structural response) peak ground velocity (PGV) is the optimal
IM , followed by structure-specific IMs (e.g. Psa), whereas
PGA is disqualified. However, [21] mention certain limita-
tions of PGV for the case of low-rise RC frames. It becomes
evident that the selection of the optimal among numerous dif-
ferent IMs (e.g. 65 options are listed in [1]) depends on sev-
eral factors and thus, is not trivial. This highlights the superi-
ority of the KDE approach, which allows the computation of
assumption-free fragility curves that are reliable independently
of the choice of the intensity measure.
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Figure 8: Fragility curves using PGA

6.2 Statistics of fragility curves using bootstrap resampling

Let us now examine the uncertainty in the estimated fragility
curves. To this end, we employ the so-called bootstrap re-
sampling technique that allows evaluation of the variabil-
ity of a statistical measure for a given sample [22]. We
first obtain M = 100 resamples of the original data set
{(IMi,∆i), i = 1, . . . , N} by random sampling with re-
placement. These represent the so-called bootstrap samples.
Each bootstrap sample has the same size as the original data
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Figure 9: Fragility curves using Psa

set, but some of the original observations may appear multiple
times while others may be missing. For each bootstrap sample,
we compute the fragility curves using the techniques presented
in Section 5. Finally, we perform statistical analysis of the M
so-obtained sets of bootstrap curves and extract statistical mea-
sures of interest. In the following, this procedure is employed
to estimate bootstrap medians and 95% confidence intervals
for the fragility curves shown in Figure 8 and Figure 9.

Figure 10 shows bootstrap medians and confidence intervals
for the fragility curves obtained with the MLE- and KDE-
based approaches. As shown above, the LR approach for es-
timation of the fragility parameters may yield unacceptable
errors and thus, the respective bootstrap statistics are not ex-
amined. In the upper (resp. lower) graphs of Figure 10, the
considered IM is PGA (resp. Psa). As an example demon-
stration of the use of bootstrap resampling in fragility analy-
sis, results are shown only for the two lower drift limits (i.e.
δo = 0.005, 0.01). Fragility curves for the higher drift limits
are characterized by larger uncertainty due to a smaller number
of available earthquake records that cause deformations in the
respective ranges. Figure 10 shows that in all cases the boot-
strap median curves are consistent with the curves obtained
from the initial data set, which proves the stability and relia-
bility of the proposed approaches. Next, we examine the un-
certainty in the fragility curves in terms of the confidence in-
tervals. For a specified IM type and drift limit, the confidence
intervals become wider with increasing IM values. This is due
to the smaller number of observations corresponding to these
regions. For the lower values of a considered IM , confidence
intervals for the MLE- and KDE-based approaches have simi-
lar widths. For larger IM values, confidence intervals for the
MLE-based curves tend to be narrower due to the fact that the
MLE approach arbitrarily prescribes the shape of the fragility
curves. It was shown earlier that in these regions, the MLE-
based curves may deviate from the KDE-based curves, which
are considered to represent the “true” fragilities. We also note
in Figure 10 that use of Psa as IM leads to narrower con-
fidence intervals than use of PGA. This is due to the higher
correlation of the former with structural response.

7 CONCLUSIONS

The paper proposed the kernel density estimation (KDE) ap-
proach for developing seismic fragility curves as an alterna-
tive to the classical approach that presumes the curves have the
shape of a lognormal-CDF. KDE is an efficient non-parametric

approach that can be used to compute fragility curves when
the actual shape of these curves is not known as well as to val-
idate or calibrate parametric fragility curves. The accuracy of
the KDE approach was recently established through compari-
son with results from another non-parametric approach based
on Monte-Carlo simulation [19].

In an example illustration, we applied the KDE approach to
compute seismic fragility curves for a typical concrete bridge
column using a large number of time-history analyses with
recorded ground motions. Fragility curves were developed for
four column drift limits considering two ground motion inten-
sity measures, namely the peak ground acceleration (PGA)
and the pseudo-spectral acceleration (Psa). The KDE-based
curves were compared with fragility curves obtained with the
classical parametric lognormal approach. The parameters of
the latter were estimated with two techniques, namely by lin-
ear regression assuming a linear probabilistic seismic demand
model and by maximum likelihood estimation.

Considering the KDE-based curves as the reference fragility
curves, we showed that for the specific data, the accuracy of
the lognormal curves was highly dependent on the drift limit,
the method of parameter estimation and the considered inten-
sity measure. The accuracy of both parameter estimation ap-
proaches deteriorated with increasing drift limit. Particularly
large deviations from the KDE-based curves were observed
for lognormal curves versus Psa with parameters estimated
by means of linear regression. In the same example application,
we demonstrated the use of bootstrap resampling technique for
evaluation of the uncertainty in fragility estimation. Narrower
confidence intervals were obtained for fragility curves versus
Psa than versus PGA due to the higher correlation of the for-
mer with structural response.

We note that the KDE approach can also be applied for esti-
mation of seismic fragilities in terms of two or more intensity
measures of the seismic excitation. In the recent years, fragility
surfaces have emerged as a promising tool for representing
seismic vulnerability as a function of two intensity measures.
The present study opens new paths for estimation of fragility
surfaces as well.
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